首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   32篇
  国内免费   2篇
化学   24篇
晶体学   26篇
力学   59篇
综合类   2篇
数学   9篇
物理学   230篇
  2022年   3篇
  2021年   1篇
  2020年   8篇
  2019年   10篇
  2018年   8篇
  2017年   4篇
  2016年   21篇
  2015年   19篇
  2014年   9篇
  2013年   93篇
  2012年   12篇
  2011年   7篇
  2010年   11篇
  2009年   12篇
  2008年   12篇
  2007年   19篇
  2006年   12篇
  2005年   14篇
  2004年   6篇
  2003年   9篇
  2002年   3篇
  2001年   8篇
  2000年   9篇
  1999年   2篇
  1998年   9篇
  1997年   7篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有350条查询结果,搜索用时 31 毫秒
11.
G. Winther  C.S. Hong  X. Huang 《哲学杂志》2015,95(13):1471-1489
For the specific slip geometry of two sets of coplanar systems (a total of four systems) in fcc metals, the range of dislocation networks in boundaries aligned with one of the two active slip planes is predicted from the Frank equation for boundaries free of long-range elastic stresses. Detailed comparison with experimental data for eight dislocation boundaries in cold-rolled aluminium grains of the 45° ND rotated Cube orientation is conducted. It is concluded that the boundaries are Low-Energy Dislocation Structures, which are in good agreement with the Frank equation while also lowering the energy by dislocation reactions. Cross slip plays a role in the boundary formation process.  相似文献   
12.
13.
Volume expansion and poor conductivity are two major obstacles that hinder the pursuit of the lithium-ion batteries with long cycling life and high power density. Herein, we highlight a misfit compound PbNbS3 with a soft/rigid superlattice structure, confirmed by scanning tunneling microscopy and electrochemical characterization, as a promising anode material for high performance lithium-ion batteries with optimized capacity, stability, and conductivity. The soft PbS sublayers primarily react with lithium, endowing capacity and preventing decomposition of the superlattice structure, while the rigid NbS2 sublayers support the skeleton and enhance the migration of electrons and lithium ions, as a result leading to a specific capacity of 710 mAh g−1 at 100 mA g−1, which is 1.6 times of NbS2 and 3.9 times of PbS. Our finding reveals the competitive strategy of soft/rigid structure in lithium-ion batteries and broadens the horizons of single-phase anode material design.  相似文献   
14.
InAsSb-based nBn photodetectors were fabricated on GaAs, using the interfacial misfit (IMF) array growth mode, and on native GaSb. At −0.1 V operating bias, 200 K dark current densities of 1.4 × 10−5 A cm2 (on GaAs) and 4.8 × 10−6 A cm−2 (on GaSb) were measured. At the same temperature, specific detectivity (D*) figures of 1.2 × 1010 Jones (on GaAs) and 7.2 × 1010 Jones (on GaSb) were calculated. Arrhenius plots of the dark current densities yielded activation energies of 0.37 eV (on GaAs) and 0.42 eV (on GaSb). These values are close to the 4 K bandgap of the absorption layers (0.32–0.35 eV) indicating diffusion limited dark currents and small valence band offsets. Significantly, these devices could be used for mid-infrared focal plane arrays operating within the temperature range of cost-effective thermoelectric coolers.  相似文献   
15.
We propose a novel scenario for the electronic state in the manganese perovskites. We argue that, at low temperatures and within the ferromagnetic state, the physics of these colossal magnetoresistance compounds may be characterized by a correlated metallic state near a metal insulator transition where the orbital degrees of freedom play the main role. This follows from the observation that a two-band degenerate Hubbard model under a strong magnetic field can be mapped onto a para-orbital single band model. We solve the model numerically using the quantum Monte-Carlo technique within a dynamical mean field theory which is exact in the limit of large lattice connectivity. We argue that the proposed scenario may allow for the qualitative interpretation of a variety of experiments which were also observed in other (early) transition metal oxides. Received: 3 October 1997 / Revised: 9 December 1997 / Accepted: 12 January 1998  相似文献   
16.
17.
A study of the indentation size effect (ISE) in aluminum and alpha brass is presented. The study employs rate effects to examine the fundamental mechanisms responsible for the ISE. These rate effects are characterized in terms of the rate sensitivity of the hardness, , where H is the hardness and is an effective strain rate in the plastic volume beneath the indenter. can be measured using indentation creep, load relaxation, or rate change experiments. The activation volume V∗, calculated based on which can traditionally be used to compare rate sensitivity data from a hardness test to conventional uniaxial testing, is calculated. Using materials with different stacking fault energy and specimens with different levels of work hardening, we demonstrate how increasing the dislocation density affects V∗; these effects may be taken as a kinetic signature of dislocation strengthening mechanisms. We noticed both H and exhibit an ISE. The course of V∗ vs. H as a result of the ISE is consistent with the course of testing specimens with different level of work hardening. This result was observed in both materials. This suggests that a dislocation mechanism is responsible for the ISE. When the results are fitted to a strain gradient plasticity model, the data at deep indents (microhardness and large nanoindentation) exhibit a straight-line behavior closely identical to literature data. However, for shallow indents (nanoindentation data), the slope of the line severely changes, decreasing by a factor of 10, resulting in a “bilinear behavior”.  相似文献   
18.
The stress-strain behavior and copper are studied by the molecular dynamics incipient yield surface of nanoporous single crystal (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loading. The loading induced defect evolution is explored. The incipient yield surfaces are found to be tension-compression asymmetric. For a given void volume fraction, apparent size effects in the yield surface are predicted: the smaller behaves stronger. The evolution pattern of defects (i.e., dislocation and stacking faults) is insensitive to the model size and void volume fraction. However, it is loading path dependent. Squared prismatic dislocation loops dominate the incipient yielding under hydrostatic tension while stacking-faults are the primary defects for hydrostatic compression and uniaxial tension/compression.  相似文献   
19.
Simulation for surface self-nanocrystallization under shot peening   总被引:3,自引:0,他引:3  
Driven by high frequency and multi-directional shot peens, dislocations of various orientations proliferate into the metal, and accumulate in high density in the surface layer of a shallow depth. Migration, generation and annihilation of dislocations dictate the evolution of mobile dislocation density. Simulation for the experiment of pure iron under repeated shot peen flux of 800 times per square millimeter is carried out, and a dislocation density up to 2.17×1011 mm−2 is achieved. Dislocations of such density in the surface layer are shown to be capable of forming nano-grains whose size is about 10 nm. Molecular dynamics simulation verifies the formation of nano-grained metals at such dislocation density level. The dislocations are first regrouped to form subcrystallites, then combined to form stable nanocrystallized grains after sufficiently long time of relaxation. The project supported by the National Natural Science Foundation of China (10121202)  相似文献   
20.
The dislocation structure at the initial stage of relaxation of GexSi1−x films (x∼0.4–0.8) grown on Si (0 0 1) substrates tilted at 6° to the nearest (1 1 1) plane is studied. The use of Si substrates tilted away from the exact (0 0 1) orientation for epitaxial growth of GexSi1−x films (x≥0.4) allowed finding the basic mechanism of formation of edge dislocations that eliminate the mismatch stresses. Though the edge dislocations are defined as sessile dislocations, they are formed in accordance with the slipping mechanism proposed previously by Kvam et al. (1990). It is highly probable that a 60° misfit dislocation (MD) propagating by the slipping mechanism provokes the nucleation of a complementary 60° MD slipping in a mirror-like tilted plane (1 1 1). The reaction between these dislocations leads to the formation of an edge MD that ensures more effective reconciliation of the discrepancy. Comparative estimation of the slip velocities of the primary and induced 60° MDs and also of the resultant 90° MD is fulfilled. The slip velocity of the induced 60° MD is appreciably greater than the velocity of the primary 60° MD. Therefore, the induced MD “catches up” with the second front of the primary MD, thus forming a 90° MD propagating to both sides due to slipping of the 60° MDs forming it. The propagation velocity of the 90° MD is also greater than the slip velocity of a single 60° MD. For these reasons, 90° MDs under certain conditions that favor their formation and propagation can become the main defects responsible for plastic relaxation of GeSi films close to Ge in terms of their composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号