首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   640篇
  国内免费   287篇
化学   1061篇
晶体学   22篇
力学   76篇
综合类   31篇
数学   278篇
物理学   1603篇
  2024年   5篇
  2023年   28篇
  2022年   62篇
  2021年   49篇
  2020年   59篇
  2019年   56篇
  2018年   76篇
  2017年   100篇
  2016年   92篇
  2015年   103篇
  2014年   188篇
  2013年   150篇
  2012年   185篇
  2011年   217篇
  2010年   174篇
  2009年   160篇
  2008年   173篇
  2007年   175篇
  2006年   142篇
  2005年   148篇
  2004年   108篇
  2003年   108篇
  2002年   63篇
  2001年   62篇
  2000年   47篇
  1999年   38篇
  1998年   40篇
  1997年   45篇
  1996年   35篇
  1995年   40篇
  1994年   26篇
  1993年   15篇
  1992年   24篇
  1991年   14篇
  1990年   11篇
  1989年   10篇
  1988年   7篇
  1987年   11篇
  1986年   8篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
排序方式: 共有3071条查询结果,搜索用时 645 毫秒
71.
Microfluidic devices with three-dimensional (3-D) arrays of microelectrodes embedded in microchannels have been developed to study dielectrophoretic forces acting on synthetic micro- and nanoparticles. In particular, so-called deflector structures were used to separate particles according to their size and to enable accumulation of a fraction of interest into a small sample volume for further analysis. Particle velocity within the microchannels was measured by video microscopy and the hydrodynamic friction forces exerted on deflected particles were determined according to Stokes law. These results lead to an absolute measure of the dielectrophoretic forces and allowed for a quantitative test of the underlying theory. In summary, the influence of channel height, particle size, buffer composition, electric field, strength and frequency on the dielectrophoretic force and the effectiveness of dielectrophoretic deflection structures were determined. For this purpose, microfluidic devices have been developed comprising pairs of electrodes extending into fluid channels on both top and bottom side of the microfluidic channels. Electrodes were aligned under angles varying from 0 to 75 degrees with respect to the direction of flow. Devices with channel height varying between 5 and 50 microm were manufactured. Fabrication involved a dedicated bonding technology using a mask aligner and UV-curing adhesive. Particles with radius ranging from 250 nm to 12 microm were injected into the channels using aqueous buffer solutions.  相似文献   
72.
Barkó G  Hlavay J 《Talanta》1997,44(12):2237-2245
A piezoelectric chemical sensor array was developed using four quartz crystals. Gas chromatographic stationary phases were used as sensing materials and the array was connected to an artificial neural network (ANN). The application of the ANN method proved to be particularly advantageous if the measured property (mass, concentration, etc.) should not be connected exactly to the signal of the transducers of the piezoelectric sensor. The optimum structure of neural network was determined by a trial and error method. Different structures were tried with several neurons in the hidden layer and the total error was calculated. The optimum values of primary weight factors, learning rate (η=0.15), momentum term (μ=0.9), and the sigmoid parameter (β=1) were determined. Finally, three hidden neurons and 900 training cycles were applied. After the teaching process the network was used for identification of taught analytes (acetone, benzene, chloroform, pentane). Mixtures of organic compounds were also analysed and the ANN method proved to be a reliable way of differentiating the sensing materials and identifying the volatile compounds.  相似文献   
73.
Uniform ZnO nanorods arrays are grown directly from and on Zn foils in pure water under hydrothermal conditions at a relatively low temperature. The nanorods are 80–200 nm in diameter and ∼ 1 μm in length, which grow on the Zn foil along the [001] direction. By changing the pure water to a urea solution, a Zn compound ([Zn5(OH)6(CO3)2], a precursor of ZnO nanoflowers film, is created by self-assembly. The ZnO nanoflowers film can be easily obtained by heating the [Zn5(OH)6(CO3)2] compound in N2 at 350∘C for 5–6 hours. Possible growth processes of the ZnO nanorods arrays and the [Zn5(OH)6(CO3)2] nanoflowers are discussed. Photoluminescence properties of the as-prepared ZnO nanostructures have been measured. The ZnO nanorods array synthesized using our method has minimal defects so that only band-gap emission is observed. However, the ZnO nanoflowers film, obtained by heating the [Zn5(OH)6(CO3)2] nanoflower precursor in N2, is polycrystalline and displays strong defect-related emission.  相似文献   
74.
Bromberg A  Mathies RA 《Electrophoresis》2004,25(12):1895-1900
A high-throughput homogeneous immunoassay for the sensitive detection of 2,4,6-trinitrotoluene (TNT) has been developed using radial capillary array electrophoresis microdevices. Samples consisting of equilibrium mixtures of anti-TNT antibody (Ab), fluorescein-labeled TNT, and various concentrations of unlabeled TNT were electrokinetically injected into 48 channels of a radial capillary array electrophoresis microchannel plate. The rapid electrophoretic separation allows us to analyze the equilibrium ratio formed by the competition between the labeled and the unlabeled TNT for Ab binding. The simultaneous parallel TNT separations facilitate determination of a calibration curve for the TNT assay, which has high sensitivity (LOD, 1 ng/mL) and a wide dynamic range (1-300 ng/mL).  相似文献   
75.
A supercritical fluid extraction (SFE) method was developed in the present study as an effective sample pretreatment technique of petroleum distillates from fire debris. Three petroleum distillates were used as target analytes, including 95 unleaded gasoline, kerosene, and premium diesel. An orthogonal array (L16) experimental design was adopted to separately evaluate primary SFE experimental factors. The SFE efficiencies of petroleum distillates at various extraction conditions were examined and the optimized SFE conditions were identified. Experimental results demonstrated that the optimized SFE method not only provided an effective extraction method for the spiked sample, but also successfully recovered residues of petroleum distillates from fire debris.  相似文献   
76.
《Electroanalysis》2005,17(3):239-245
Oxygen dependence of a tyrosinase‐based electrochemical biosensor for determination of phenol in aqueous and organic media was systematically investigated. The result demonstrated that the enzymatic coupling reaction rate of tyrosinase (deoxy form) and O2 to regenerate tyrosinase (oxy form) is a kinetically fast reaction, and the significant change of O2 concentration in aqueous solution did not affect the coupling reaction. The further increase of O2 concentration did not increase the overall oxidation reaction rate of the substrate at low substrate concentration (e.g.,<10 μM phenol) when O2 concentration was greater than 8.9 ppm. The oxygen dependence was observed in the case of high substrate concentration due to insufficient amount of O2 available for the regeneration of tyrosinase. In other words, the upper linear range is oxygen dependent for tyrosinase biosensors. The phenol biosensors employing microelectrodes had wider upper linear ranges than macroelectrodes in both aqueous and organic phase, which can be explained by the oxygen dependence.  相似文献   
77.
We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O2-responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance.  相似文献   
78.
Modified octaphyrins with 34pi electrons have been synthesized and characterized following a simple synthetic methodology. An acid-catalyzed alpha,alpha coupling of tetrapyrranes containing furan, thiophene and selenophene rings resulted in the formation of the respective octaphyrins in relatively good yield. Solution studies by (1)H NMR and 2D NMR methods and single crystal Xray structural characterization reveal an almost flat structure with two heterocyclic rings inverted. Specifically, in 14 two selenophene rings (one on each biselenophene unit) are inverted while in 15 two furan rings (one on each bifuran unit) are inverted when the meso substituent are mesityl groups. On changing the mesityl substituent to m-xylyl group as in 19, the location of ring inversion shifts to pyrrole rings (one on each bipyrrole unit) indicating the dependence of structure on the meso substituents. UV/Vis studies, both in freebase and protonated forms reveal typical porphyrinic character and the aromatic nature of the octaphyrins. The Deltadelta values evaluated by (1)H NMR spectroscopy also support their aromatic nature. The protonated forms of octaphyrins bind TFA anion in a 1:2 ratio. The TFA anions are located one above and below the plane of the octaphyrin macrocycle and they are held by weak electrostatic NH-O interactions similar to that observed for protonated rubyrins. However, in the present case, there is an additional non-electrostatic CH-O interaction involving beta-CH of the inverted heterocyclic ring and the carbonyl oxygen of the TFA. Furthermore, inter molecular interactions between the Cbond;H of the meso-mesityl group and the fluorine of CF(3) group of bound TFA leads to the formation of one-dimensional supramolecular arrays with interplanar distance of 13 A between two octaphyrins.  相似文献   
79.
Cortina M  Gutés A  Alegret S  Del Valle M 《Talanta》2005,66(5):1197-1206
An intelligent, automatic system based on an array of non-specific-response chemical sensors was developed. As a great amount of information is required for its correct modelling, we propose a system generating it itself. The sequential injection analysis (SIA) technique was chosen as it enables the processes of training, calibration, validation and operation to be automated simply. Detection was carried out using an array of potentiometric sensors based on PVC membranes of different selectivity. The diluted standard solutions needed for system learning and response modelling are automatically prepared from more concentrated standards. The electrodes used were characterised with respect to one and two analytes, by means of high-dimensionality calibrations, and the response surface of each was represented; this characterisation enabled an interference study of great practical utility. The combined response was modelled by means of artificial neural networks (ANNs), and thus it was possible to obtain an automated electronic tongue based on SIA. In order to identify the ANN which provided the best model of the electrode responses, some of the network's parameters were optimised and its usefulness in determining NH4+, K+ and Na+ ions in synthetic samples was then tested. Finally, it was used to determine these ions in commercial fertilisers, the obtained results being compared with reference methods.  相似文献   
80.
Summary The effects of concentration, separation and spectral similarity as factors influencing the accuracy of iterative target testing factor analysis (ITT-FA) are investigated for three component systems by the application of analysis of variance (ANOVAR). ANOVAR is applied over a range of peak separations to map the changing effects of the three factors with increasing overlap. Two error responses were measured and analysed, (a) Relative cluster error (RCE) a measure of the error over all peaks in a cluster and (b) Relative peak error (RPE) the error of an individual peak. Multicomponent analysis (MCA) a method requiringa priori spectral information, is used as a referee method for ITT-FA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号