首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2275篇
  免费   576篇
  国内免费   245篇
化学   958篇
晶体学   37篇
力学   195篇
综合类   36篇
数学   94篇
物理学   1776篇
  2024年   4篇
  2023年   18篇
  2022年   59篇
  2021年   61篇
  2020年   79篇
  2019年   48篇
  2018年   73篇
  2017年   92篇
  2016年   99篇
  2015年   99篇
  2014年   139篇
  2013年   196篇
  2012年   167篇
  2011年   143篇
  2010年   129篇
  2009年   127篇
  2008年   139篇
  2007年   177篇
  2006年   143篇
  2005年   142篇
  2004年   124篇
  2003年   117篇
  2002年   135篇
  2001年   93篇
  2000年   90篇
  1999年   70篇
  1998年   59篇
  1997年   47篇
  1996年   25篇
  1995年   28篇
  1994年   40篇
  1993年   21篇
  1992年   21篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   4篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1957年   1篇
排序方式: 共有3096条查询结果,搜索用时 78 毫秒
81.
单扫描示波极谱法测定扑热息痛   总被引:2,自引:0,他引:2  
扑热息痛与NaNO2在中性介质中发生反应,其亚硝化衍生物具有良好的电活性。在pH9.37的Britton-Robinson缓冲溶液中,于-0.56V(vs.SCE)产生灵敏的极谱还原峰,峰电流与扑热息痛质量浓度在0.007-0.4mg/L范围有良好的线性关系,检测下限为5μg/L。此法已用于测定小儿速效感冒灵。  相似文献   
82.
在含有 0 .1 0 mol/L KCl,p H=1 0 .2的 NH3- NH4 Cl缓冲溶液中 ,用线性扫描示波极谱法测得 Gd( ) - Cal- red络合物有一灵敏的导数波 ,峰电位在 - 0 .84V,峰电流与钆 ( )的浓度在 1 .0× 1 0 - 7~ 5 .0× 1 0 - 6 mol/L范围内呈线性关系 ,检出限达1 .0× 1 0 - 7mol/L ;另外 ,试剂本身在 - 0 .61 V有导数极谱波 ,该波的峰电流随钆( )的浓度增加而降低 ,也具有一定的线性关系  相似文献   
83.
Summary The first-order polarized basis sets for the use in high-level-correlated investigations of molecular electric properties have been generated for Pb, Bi, Po, and At. The performance of the standard [10.17.14.5/13.11.8.2] and extended [20.17.14.9/13.11.8.4] basis sets has been examined in nonrelativistic and quasirelativistic calculations for atoms and simple closed-shell hydrides. The relativistic contributions to electric dipole properties of those systems have been evaluated by using the recently developed quasirelativistic scheme. The predicted dipole polarizability of At is in good agreement with the results of other relativistic calculations. The calculated quasirelativistic dipole moments of BiH3 (–0.499 a.u.), PoH2 (–0.207 a.u.), and AtH (+0.036 a.u.) involve a significant relativistic contribution which amounts to —0.230 a.u., –0.177 a.u., and –0.097 a.u., respectively. The basis set details append this paper. They are also available as a part of the basis set library of the MOLCAS system.  相似文献   
84.
Chemical mass shifts were measured in a Paul ion trap operated in the mass-selective instability scan with resonance ejection using a custom-built instrument. These shifts, which can be as much as 2%, decrease with increasing endcap electrode separation owing to changes in the higher order contributions to the electric field. They also decrease with decreasing helium buffer gas pressure. Both of these effects are analogous to those found with boundary ejection. This suggests that the previously proposed chemical mass shift mechanism based on compound-dependent collisional modification of the ejection delay produced by field faults near the endcap electrode apertures holds true also for resonance ejection. The influence of the resonance frequency on chemical mass shifts was also investigated and it is shown that at certain working points (values of the Mathieu parameter q(z) and a(z)) non-linear resonances greatly reduce the ejection delay for all ions, regardless of their chemical structures, and thus reduce the magnitude of the chemical mass shift. Energetic collisions leading to dissociation can take place at an earlier stage during the ejection process in the mass analysis scan when using resonance ejection compared with boundary ejection. This leads to even larger chemical mass shifts of fragile ions in resonance ejection. Increasing the resonance voltage amplitude can enhance this effect. The chemical mass shifts of fragile ions increase with increase in the resonance voltage amplitude, whereas negligible changes occur for structurally stable ions.  相似文献   
85.
《Chemphyschem》2003,4(7):714-724
Cytochrome c (Cyt‐c) adsorbed in the electrical double layer of the Ag electrode/electrolyte interface has been studied by stationary and time‐resolved surface‐enhanced resonance Raman spectroscopy to analyse the effect of strong electric fields on structure and reaction equilibria and dynamics of the protein. In the potential range between +0.1 and ?0.55 V (versus saturated calomel electrode), the adsorbed Cyt‐c forms a potential‐dependent reversible equilibrium between the native state B1 and a conformational state B2. The redox potentials of the bis‐histidine‐coordinated six‐coordinated low‐spin and five‐coordinated high‐spin substates of B2 were determined to be ?0.425 and ?0.385 V, respectively, whereas the additional six‐coordinated aquo‐histidine‐coordinated high‐spin substate was found to be redox‐inactive. The redox potential for the conformational state B1 was found to be the same as in solution in agreement with the structural identity of the adsorbed B1 and the native Cyt‐c. For all three redox‐active species, the formal heterogeneous electron transfer rate constants are small and of the same order of magnitude (3–13 s?1), which implies that the rate‐limiting step is largely independent of the redox‐site structure. These findings, as well as the slow and potential‐dependent transitions between the various conformational (sub‐)states, can be rationalized in terms of an electric field‐induced increase of the activation energy for proton‐transfer steps linked to protein structural reorganisation. Further increasing the electric field strength by shifting the electrode potential above +0.1 V leads to irreversible structural changes that are attributed to an unfolding of the polypeptide chain.  相似文献   
86.
Electrodialysis (ED) is a membrane process used on a large scale. However, one of the common problems is fouling of ion-exchange membranes stacked in the cell. The use of pulsed power, consisting in applying a constant current density during a fixed time of application (Ton) followed by a pause duration (Toff), was demonstrated recently as an effective fouling mitigation method for electrodialysis. Up until now, no work has investigated the potential of electrodialysis using pulsed electric field on protein fouling. The aim of the present work was to study the influence of pulsed electric field (PEF) with a low frequency square shaped periodic signal (Ton = 10 s–Toff = 10 s, Ton = 10 s–Toff = 40 s) in comparison with dc current during electrodialysis of a casein solution at different current densities (10, 20 and 30 mA/cm2) on membrane fouling. It appeared from these results that PEF, under certain conditions of pulse, would avoid fouling on anion-exchange membranes. For 10 s–40 s pulsed electric field conditions, no fouling was observed with any density, while for 10 s–10 s PEF conditions, fouling appeared only at current density over 10 mA/cm2. dc current, whatever the current density conditions, led to a fouling on the diluate side of the AEM. Furthermore, when fouling occurred, magnitude layer thickness and dry weight increased with the applied current density. The nature of the fouling was identified as 97% protein. The protein fouling would be due to the dissociation of water molecules and/or heat increase at the anion-exchange membrane interface. The relaxation time of the pulse would limit both phenomena on the membrane.  相似文献   
87.
We propose a new electric field-induced micro/nanocasting method to replicate soft patterns using micro/nanocasting techniques without pressure. The process uses an alternating current (AC) electrical field and rotation of one electrode, generating a dynamic electrical field that induces electrokinetic flow motion in a dielectric solution (polydimethylsilane, PDMS). We used a lotus leaf as a replication template and characterised the PDMS flow motion to observe the effects of various process parameters (e.g., electrical field strength, rotation speed of an electrode, and electrode shape). The unstable flow motion was significantly dependent on the processing parameters, especially the rotation speed of the electrode. Using the optimised processing conditions, the replication efficiency was about 88%. We believe that this method has potential for fabricating soft micro/nanosized structures.  相似文献   
88.
Interacting Boson Model-2(IBM-2)is used to determine the Hamiltonian for Er nuclei.Fit values of parameters are used to construct the Hamiltonian,energy levels and electromagnetic transitions(B(E2),B(M1))multipole mixing ratios(δ(E2/M1))for some even-even Er nuclei and monopole transition probability are estimated.New ideas are used for counting bosons number at N=64 and results are compared with previous works.  相似文献   
89.
Impedance spectroscopy was utilized to investigate the dielectric properties, ac conductivity and charge transport mechanisms in propylene-alt-CO/ethylene-alt-CO (EPEC) random terpolymer filled with multi-walled carbon nanotubes (MWCNT) as a function of nanofiller content, frequency, and temperature. Equivalent resistor-capacitor (RC) circuit models were proposed to describe the impedance characteristics of the unfilled terpolymer and the nanocomposite at different temperatures. For the nanocomposites, the ac conductivity tended to be frequency independent at low frequencies. At high frequencies, the ac conductivity increased with frequency. The dc conductivity (i.e., plateau of the ac conductivity at low frequencies) at room temperature increased from 10?9 (Ω·m)?1 for the unfilled polymer to l0?3 (Ω·m)?1 for the 6 wt% MWCNT/EPEC nanocomposite. At low temperatures, the equivalent RC model for EPEC-0 and EPEC-2 was found to consist of a parallel RC circuit. However, for 6 wt% MWCNT/EPEC nanocomposite, an RC model consisting of an R/constant phase element (CPE) circuit and a resistor in series was required to describe the impedance behavior of the nanocomposite.  相似文献   
90.
Nong-Chao Xin 《中国物理 B》2021,30(11):113701-113701
Molecular dynamics simulation of a sympathetically-cooled 113Cd+ ion crystal system is achieved. Moreover, the relationship between ions' axial temperature and different electric parameters, including radio frequency voltage and end-cap voltage is depicted. Under stable trapping condition, optimum radio frequency voltage, corresponding to minimum temperature and the highest cooling efficiency, is obtained. The temperature is positively correlated with end-cap voltage. The relationship is also confirmed by a sympathetically-cooled 113Cd+ microwave clock. The pseudo-potential model is used to illustrate the relationship and influence mechanism. A reasonable index, indicating ions' temperature, is proposed to quickly estimate the relative ions' temperature. The investigation is helpful for ion crystal investigation, such as spatial configuration manipulation, sympathetic cooling efficiency enhancement, and temporal evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号