首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   266篇
  国内免费   65篇
化学   302篇
晶体学   249篇
力学   116篇
综合类   5篇
数学   25篇
物理学   809篇
  2024年   2篇
  2023年   15篇
  2022年   37篇
  2021年   63篇
  2020年   39篇
  2019年   32篇
  2018年   33篇
  2017年   49篇
  2016年   57篇
  2015年   50篇
  2014年   54篇
  2013年   102篇
  2012年   48篇
  2011年   71篇
  2010年   106篇
  2009年   81篇
  2008年   56篇
  2007年   70篇
  2006年   91篇
  2005年   59篇
  2004年   80篇
  2003年   45篇
  2002年   40篇
  2001年   49篇
  2000年   46篇
  1999年   22篇
  1998年   18篇
  1997年   24篇
  1996年   17篇
  1995年   10篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1506条查询结果,搜索用时 31 毫秒
101.
A new hydride vapor phase epitaxy (HVPE)-based approach for the fabrication of freestanding GaN (FS-GaN) substrates was investigated. For the direct formation of low-temperature GaN (LT-GaN) layers, the growth parameters were optimized: the polarity of ZnO, the growth temperature, and the V/III ratio. The FS-GaN layer was achieved by gas etching in an HVPE reactor. A fingerprint of Zn out-diffusion was detected in the photoluminescence measurements, especially for the thin (80 μm) FS-GaN film; however, a thicker film (400 μm) was effectively reduced by optimization of GaN growth.  相似文献   
102.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   
103.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   
104.
The boule-like growth of GaN in a vertical AIXTRON HVPE reactor was studied. Extrinsic factors like properties of the starting substrate and fundamental growth parameters especially the vapor gas composition at the surface have crucial impact on the formation of inverse pyramidal defects. The partial pressure of GaCl strongly affects defect formation, in-plane strain, and crystalline quality. Optimized growth conditions resulted in growth rates of 300–500 μm/h. GaN layers with thicknesses of 2.6 and of 5.8 mm were grown at rates above 300 μm/h. The threading dislocation density reduces with an inverse proportionality to the GaN layer thickness. Thus, it is demonstrated that growth rates above 300 μm/h are promising for GaN boule growth.  相似文献   
105.
Semiconductor magnetic quantum dots are very promising structures, with novel properties that find multiple applications in spintronic devices. EuTe is a wide gap semiconductor with NaCl structure, and strong magnetic moments S=7/2 at the half filled 4f7 electronic levels. On the other hand, SnTe is a narrow gap semiconductor with the same crystal structure and 4% lattice mismatch with EuTe. In this work, we investigate the molecular beam epitaxial growth of EuTe on SnTe after the critical thickness for island formation is surpassed, as a previous step to the growth of organized magnetic quantum dots. The topology and strain state of EuTe islands were studied as a function of growth temperature and EuTe nominal layer thickness. Reflection high energy electron diffraction (RHEED) was used in-situ to monitor surface morphology and strain state. RHEED results were complemented and enriched with atomic force microscopy and grazing incidence X-ray diffraction measurements made at the XRD2 beamline of the Brazilian Synchrotron. EuTe islands of increasing height and diameter are obtained when the EuTe nominal thickness increases, with higher aspect ratio for the islands grown at lower temperatures. As the islands grow, a relaxation toward the EuTe bulk lattice parameter was observed. The relaxation process was partially reverted by the growth of the SnTe cap layer, vital to protect the EuTe islands from oxidation. A simple model is outlined to describe the distortions caused by the EuTe islands on the SnTe buffer and cap layers. The SnTe cap layers formed interesting plateau structures with easily controlled wall height, that could find applications as a template for future nanostructures growth.  相似文献   
106.
Tungsten trioxide (WO3) nanobelts in tetragonal structure were grown on Si substrates by a hot-wall chemical vapor deposition (CVD) method without using catalysts. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and photoluminescence (PL) spectrum. The width of the nanobelts is in the range of 50–100 nm with width-to-thickness ratios of 5–10 and lengths of up to tens of micrometers. These nanobelts grew along the [0 0 1] direction and can be identified as the tetragonal WO3 structures. Raman and PL measurements indicate the high quality of the nanobelts. The vapor–solid growth mechanism could be applicable in our experiment.  相似文献   
107.
This work presents an experimental study on the identification and quantification of different types of dislocations in GaN grown by low-pressure solution growth. A reliable defect selective etching procedure in a NaOH-KOH melt is developed and validated using transmission electron microscopy that permits to define groups of etch pits that belong each to dislocations with a specific Burgers vector. This way a comparably fast method is provided for determining the total, the specific dislocation densities and the type of dislocation in a statistically representative way. The results for the solution grown samples are compared to those obtained for MOCVD GaN.  相似文献   
108.
The dislocation structure at the initial stage of relaxation of GexSi1−x films (x∼0.4–0.8) grown on Si (0 0 1) substrates tilted at 6° to the nearest (1 1 1) plane is studied. The use of Si substrates tilted away from the exact (0 0 1) orientation for epitaxial growth of GexSi1−x films (x≥0.4) allowed finding the basic mechanism of formation of edge dislocations that eliminate the mismatch stresses. Though the edge dislocations are defined as sessile dislocations, they are formed in accordance with the slipping mechanism proposed previously by Kvam et al. (1990). It is highly probable that a 60° misfit dislocation (MD) propagating by the slipping mechanism provokes the nucleation of a complementary 60° MD slipping in a mirror-like tilted plane (1 1 1). The reaction between these dislocations leads to the formation of an edge MD that ensures more effective reconciliation of the discrepancy. Comparative estimation of the slip velocities of the primary and induced 60° MDs and also of the resultant 90° MD is fulfilled. The slip velocity of the induced 60° MD is appreciably greater than the velocity of the primary 60° MD. Therefore, the induced MD “catches up” with the second front of the primary MD, thus forming a 90° MD propagating to both sides due to slipping of the 60° MDs forming it. The propagation velocity of the 90° MD is also greater than the slip velocity of a single 60° MD. For these reasons, 90° MDs under certain conditions that favor their formation and propagation can become the main defects responsible for plastic relaxation of GeSi films close to Ge in terms of their composition.  相似文献   
109.
The bowing curvature of the free-standing GaN substrate significantly decreased almost linearly from 0.67 to 0.056 m−1 (i.e. the bowing radius increased from 1.5 to 17.8 m) with increase in inductively coupled plasma (ICP) etching time at the N-polar face, and eventually changed the bowing direction from convex to concave. Furthermore, the influences of the bowing curvature on the measured full width at half maximum (FWHM) of high-resolution X-ray diffraction (HRXRD) in (0 0 2) reflection were also deduced, which reduced from 176.8 to 88.8 arcsec with increase in ICP etching time. Decrease in the nonhomogeneous distribution of threading dislocations and point defects as well as VGa–ON complex defects on removing the GaN layer from N-polar face, which removed large amount of defects, was one of the reasons that improved the bowing of the free-standing GaN substrate. Another reason was the high aspect ratio of needle-like GaN that appeared at the N-polar face after ICP etching, which released the compressive strain of the free-standing GaN substrate. By doing so, crack-free and extremely flat free-standing GaN substrates with a bowing radius of 17.8 m could be obtained.  相似文献   
110.
In this paper, we investigate oil-in-water emulsions in a Taylor-Couette flow. A high-speed camera was employed to record the formation of those emulsions, and image processing was used to obtain the diameter of the droplets. No surfactants were added in order to study the pure effect of the fluid dynamical forces on the droplets. The results for three different oil-in-water emulsions show that the Sauter mean diameter considerably depends on the local shear rate and the material properties and that the droplet size distribution follows a log-normal distribution. We, therefore, propose to express the Sauter mean diameter normalized by Prandtl mixing length in terms of a correlation, which is based on the Kolmogorov turbulence theory. This correlation subsequently depends on the local shear rate and the material properties such as viscosity, density, and interfacial tension. The predictions of the correlation show fairly good agreement with the experimental measurement the Sauter mean diameter. Finally, comparing the predictions of the correlation to the data presented by Eskin et al. [Chem. Eng. Sci. 161 36–47; 2017] shows excellent agreement in the case, where the droplets are larger than the Kolmogorov length scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号