首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5784篇
  免费   1547篇
  国内免费   672篇
化学   3910篇
晶体学   282篇
力学   125篇
综合类   63篇
数学   25篇
物理学   3598篇
  2024年   11篇
  2023年   41篇
  2022年   107篇
  2021年   141篇
  2020年   164篇
  2019年   142篇
  2018年   115篇
  2017年   247篇
  2016年   298篇
  2015年   272篇
  2014年   378篇
  2013年   577篇
  2012年   488篇
  2011年   440篇
  2010年   354篇
  2009年   343篇
  2008年   349篇
  2007年   391篇
  2006年   355篇
  2005年   332篇
  2004年   290篇
  2003年   277篇
  2002年   279篇
  2001年   194篇
  2000年   168篇
  1999年   142篇
  1998年   159篇
  1997年   171篇
  1996年   122篇
  1995年   134篇
  1994年   93篇
  1993年   71篇
  1992年   44篇
  1991年   44篇
  1990年   48篇
  1989年   34篇
  1988年   38篇
  1987年   28篇
  1986年   22篇
  1985年   18篇
  1984年   16篇
  1983年   14篇
  1982年   20篇
  1981年   13篇
  1980年   5篇
  1979年   7篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1957年   1篇
排序方式: 共有8003条查询结果,搜索用时 15 毫秒
991.
Water electrolysis offers a promising green technology to tackle the global energy and environmental crisis, but its efficiency is greatly limited by the sluggish reaction kinetics of both the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In this work, by growing amorphous multi-transition-metal (cobalt and iron) oxide on two-dimensional (2D) black phosphorus (BP), we develop a bifunctional electrocatalyst (CoFeO@BP), which is able to efficiently catalyze both HER and OER. The overpotentials for the hybrid CoFeO@BP catalyst to reach a current density of 10 mA cm−2 in 1 m KOH are 88 and 266 mV for HER and OER, respectively. Based on a series of ex-situ and in situ investigations, the excellent catalytic performance of CoFeO@BP is found to result from the adaptive surface structure under reduction and oxidation potentials. CoFeO@BP can be transformed to CoFe phosphide under reduction potential, in situ generating the real active catalyst for HER.  相似文献   
992.
Boron‐ and silicon‐containing conjugated homo‐ and copolymers could be synthesized using acyclic diene metathesis (ADMET) condensation of bis‐styryl monomers. Both, tri‐and tetra‐coordinated boron monomers were successfully polymerized forming homopolymers, or random copolymers (if polymerized together with a silicon containing co‐monomer). Polymer molecular weights Mn were measured at ~6000 to 15,000 g/mol (NMR end group analysis) with molecular weight distributions Mw/Mn ~1.8 to 2.2. The polymers absorbed at λmax ~317 to 406 nm and emitted at λmax ~370 to 494 nm with fluorescent quantum efficiencies ~24 to 48%. The copolymer with tri‐coordinate boron showed highly efficient fluorescence quenching in the presence of fluoride ions at ratios boron/fluoride ~5/1, demonstrating its potential as anion sensor. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1707–1718  相似文献   
993.
(Amorphous-)SiC/TiC composites for resistive tubular heaters in HP/HT experiments were obtained via a polymer-precursor process. A slurry consisting of a commercial SiC-precursor polymer (allylhydridopolycarbosilane, AHPCS) and TiC powder as conductive filler was applied to the inner walls of zirconia insulation tubes, using a centrifugation-casting method. Resistive coatings with homogeneous thickness of ~200 μm were obtained. The heaters were tested in octahedral multi-anvil assemblies at ~10 GPa with simultaneous recording of heating voltage and current. Up to a maximum temperature of ~1800°C they showed temperature vs. power characteristics reproducible from batch to batch, with resistance decreasing from 0.08 to 0.02 Ω during heating. Microstructural characterization using SEM/EDX was carried out on the recovered SiC/TiC composite material, as well as on pristine resistive heaters directly after coating and curing to 230°C, and after additional pyrolysis at 900°C in argon. In all cases, a stable composite microstructure of an interpenetrating network of TiC particles with either silicon carbide polymer precursor or an amorphous SiC phase were found. The composites were characterized by XRD and thermogravimetry. Further improvement of coating procedure and materials combination (precursor/filler/insulator substrate) may result in advanced coatings, operational well beyond 2000°C.  相似文献   
994.
In this article, programming is classified as hot, warm, and cold, based on the temperature zone within which the programming is conducted. The strain and stress locking and releasing mechanisms are discussed within the thermodynamics framework. A new formula is developed for quantifying the strain recovery ratio of cold-programmed SMPs. Stress fixity ratio and stress recovery ratio are also defined based on the understanding of stress locking and recovery mechanisms. State-of-the-art literature on warm and cold programming is reviewed. Well-controlled programming as well as free strain recovery test and constrained stress recovery test are conducted, in order to validate the memory mechanisms discussed in this study. It is found that, while programming temperature has an insignificant effect on the final free shape recovery, it has a significant effect on the stress recovery. The recovery stress programmed by cold programming may be lower, equal to, or higher than that by hot programming, due to the different stress locking mechanisms and other factors such as damage during the thermomechanical cycle. Cold, Warm, and Hot Programming of Shape Memory Polymers © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1319–1339  相似文献   
995.
Abstract

The effect of ion-plasma deposition on the structure of high-carbon films (at. %) Fe–(20–84) % С, Co–(5–52) % С, Ni–(7–61) % С was investigated. The lattice periods and crystallite sizes of nonequilibrium phases in the as-deposited state and after heating are determined. The temperatures of the beginning and end of the decay of metastable phases during heating at a constant speed are established. The transition from an amorphous to an equilibrium crystalline state in Fe–C films passes through the stage of formation and subsequent decomposition of an intermediate, metastable hcp phase of variable composition. The electrical and hysteretic magnetic properties of the films were measured in the as-deposited state and after heat treatment. The compositions and conditions for producing films with low values of the temperature coefficient of electrical resistance and high coercive force are established. Thus, high-carbon films of Ni–61% C in the as-depoteted state and Fe–69% C films after heating to 900?K are characterized by small TCR values (± 10?6 К?1) over a wide temperature range.  相似文献   
996.
The requirement for nitric oxide (NO) of lysosomes has motivated the development of a sophisticated fluorescent probe to monitor the distribution of this important biomolecule at the subcellular level in living cells. A near‐infrared (NIR) fluorescent Si‐rhodamine (SiRB)‐NO probe was designed based on the NO‐induced ring‐opening process of Si‐rhodamine. The probe exhibits fast chromogenic and fluorogenic responses, and high sensitivity and selectivity toward trace amounts of NO. Significantly, the spirolactam in Si‐rhodamine exhibits very good tolerance to H+, which in turn brings extremely low background fluorescence not only in the physiological environment but also under acidic conditions. The stability of the highly fluorescent product in acidic solution provides persistent fluorescence emission for long‐term imaging experiments. To achieve targeted imaging with improved spatial resolution and sensitivity, an efficient lysosome‐targeting moiety was conjugated to a SiRB‐NO probe, affording a tailored lysosome‐targeting NIR fluorescent Lyso‐SiRB‐NO probe. Inheriting the key advantages of its parent SiRB‐NO probe, Lyso‐SiRB‐NO is a functional probe that is suited for monitoring lysosomal NO with excellent lysosome compatibility. Imaging experiments demonstrated the monitoring of both exogenous and endogenous NO in real time by using the Lyso‐SiRB‐NO probe.  相似文献   
997.
Alpha-phenylethanol (PE) is an essential chemical in the field of medicine and synthetic perfumery. Therefore, in this work, we used a supported Ni–B–P amorphous alloy catalyst (Ni–B–P/SiO2) in the hydrogenation of acetophenone (AP) to α-PE, which demonstrated excellent catalytic activity and selectivity, compared with Ni–B/SiO2 (KBH4 reduction of nickel salt). Ni–B–P/SiO2 exhibited a high AP hydrogenation conversion of approximately 99%, whereas the PE selectivity reached up to 94%, which is approximately 1.4-fold higher than that of Ni–B/SiO2 (about 69%), thereby directly proving the unique inhibition of AP hydrogenation over hydrogenation of P in the Ni–B catalytic system. The doped P in Ni–B–P/SiO2 enhances the oxidation resistance and maintains the valence stability of Ni and B. Furthermore, sufficient experimental data were collected to determine the kinetic parameters. Based on the Langmuir–Hinshelwood model, we assumed that (i) AP and H2 compete for adsorption on Ni–B–P/SiO2; (ii) AP has strong adsorptive capacity on Ni–B–P/SiO2; and (iii) PE coverage on the catalyst was negligible. Then, the dynamic equation was derived, which indicated that experimental data agree well with the dynamic model. Finally, the activation energy was confirmed to be 50.73 KJ/mol. This report will open up an avenue for the industrialization of amorphous alloy catalysts.  相似文献   
998.
999.
1000.
Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B–P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号