首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   20篇
  国内免费   3篇
化学   224篇
晶体学   5篇
力学   97篇
数学   36篇
物理学   74篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   22篇
  2018年   20篇
  2017年   21篇
  2016年   12篇
  2015年   23篇
  2014年   11篇
  2013年   20篇
  2012年   19篇
  2011年   16篇
  2010年   20篇
  2009年   17篇
  2008年   13篇
  2007年   10篇
  2006年   21篇
  2005年   38篇
  2004年   27篇
  2003年   31篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   10篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   1篇
  1975年   2篇
  1968年   1篇
排序方式: 共有436条查询结果,搜索用时 265 毫秒
431.
We use the Lennard‐Jones and Devonshire cell theory without any ad hoc simplification of the cell potential to obtain the equation‐of‐state (EOS) for chain molecular systems. The interactions of the central segment with second and third shells of neighbors are taken into account. Numerical values of the cell integrals are given in tabular form along with interpolation expressions that cover the range of PVT variables appropriate to polymers. Results of comparison with EOS based on square‐well form are also discussed. Application of the theory to polymer glasses of diverse structures is found to be quite successful in explaining the PVT behavior over a wide range of temperatures both at atmospheric and elevated pressures. Further, scaled volume at the glass‐transition temperature is discovered to be a corresponding state property. Turning to crystals, the theory is generally in good accordance with the PVT data of three well‐studied polymers both at atmospheric and elevated pressures. For linear polyethylene the agreement is good up to 42 kbar for the room‐temperature isotherm. On the other hand, at higher temperatures where the data are limited to 5 kbar, the agreement is determined to be satisfactory for the three polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 515–530, 2001  相似文献   
432.
Polyurethane iniferter prepared from isocyanate end capped prepolymer and 1,1,2,2-tetraphenyl-1,2-ethanediol, has been used to polymerize vinylbenzyl chloride to obtain polyurethane-polyvinylbenzyl chloride multiblock copolymers. Formation of the block copolymers proceeds with increase in both molecular weight and conversion with increasing polymerization time showing that the polymerization proceeds via a “living” radical mechanism. The block copolymers so obtained were converted into their cationomers by the treatment of triethylamine. The block copolymers and their cationomers have been characterized by FTIR, FTNMR, TGA, and DSC studies. The effect of thermal energy on the molecular weight of the macroiniferter in the absence of monomer has been studied in order to understand the mechanism of formation of the block copolymers. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1237–1244, 1997  相似文献   
433.
A general method for the transformation of “living” carbocationic into “living” radical polymerization, without any modification of chain ends, is reported for the preparation of ABA block copolymers. For example, α,ω-difunctional polyisobutene, capped with several units of styrene, Cl-St-PIB-St-Cl, prepared cationically (Mn = 7800, Mw/Mn = 1.31) was used as an efficient difunctional macroinitiator for homogeneous “living” atom transfer radical polymerization to prepare triblock copolymers with styrene, PSt-PIB-PSt (Mn = 28,800, Mw/Mn = 1.14), methyl acrylate, PMA-PIB-PMA (Mn = 31,810, Mw/Mn = 1.42), isobornyl acrylate, PIBA-PIB-PIBA (Mn = 33,500, Mw/Mn = 1.21), and methyl methacrylate, PMMA-PIB-PMMA (Mn = 33,500, Mw/Mn = 1.47). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3595–3601, 1997  相似文献   
434.
A novel polyurethane iniferter, synthesized from equal moles of toluene diisocyanate and 1,1,2,2-tetraphenyl-1,2-ethanediol, was used to polymerize acrylonitrile to assess whether it proceeded via a “living” radical polymerization mechanism. From the kinetic results, the rate of polymerization could be expressed as Rpα[BPT]0.96[AN]1.64. The increase of number-average molecular weight with increase of both conversion and polymerization time, the bimodal molecular weight distribution in gel permeation chromatography and the increase of molecular weight in the post-polymerization of polyacrylonitrile confirm that the present tetraphenylethane-based polyurethane iniferter follows a “living” radical polymerization mechanism. © 1996 John Wiley & Sons, Inc.  相似文献   
435.
436.
The first example of core cross‐linked star (CCS) polyrotaxane was prepared using the poly(ϵ‐caprolactone) (PCL) CCS three‐dimensional (3D) scaffold. The 3D CCS polymer was firstly prepared through the “arm‐first” approach. Then, the “arms” of the resultant PCL CCS polymer were threaded with α‐cyclodextrins (α‐CDs). The threaded α‐CDs were permanently locked by the “click” reaction of terminal alkyne functionalities of the star polymers with the azide‐functionalized end caps to afford the CCS polyrotaxanes. All analytical results confirm the formation of the CCS polyrotaxanes and reveal their characteristics, including fluorescence under UV, a channel‐type crystalline structure, a two‐step thermal decomposition, and a unique core‐shell structure in great contrast to the polymer precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号