首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   47篇
  国内免费   14篇
化学   43篇
力学   78篇
综合类   9篇
数学   26篇
物理学   225篇
  2024年   4篇
  2023年   6篇
  2022年   8篇
  2021年   14篇
  2020年   7篇
  2019年   6篇
  2018年   11篇
  2017年   25篇
  2016年   20篇
  2015年   15篇
  2014年   17篇
  2013年   21篇
  2012年   14篇
  2011年   23篇
  2010年   15篇
  2009年   21篇
  2008年   20篇
  2007年   15篇
  2006年   13篇
  2005年   13篇
  2004年   11篇
  2003年   11篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1985年   2篇
  1984年   2篇
排序方式: 共有381条查询结果,搜索用时 46 毫秒
71.
Tarnish layers are formed in the heat affected zone during the welding of steels and nickel based alloys. They commonly consist of oxides of the alloying elements. The corrosion behaviour of welded components is generally influenced by the thickness and composition of the oxide films. In the following the corrosion behaviour of annealed samples cut from NiMo28 and NiMo16Cr16Ti is investigated, correlating XPS, SNMS and SEM/EDX data to their pitting corrosion potentials.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   
72.
焊条药皮中稀土氧化物向焊缝中过渡机制的研究   总被引:5,自引:0,他引:5  
通过向焊条药皮中加入稀土氧化物的方法,研究了在焊条药皮中加入不同种类、不同含量的稀土氧化物对焊缝金属低温冲击韧性、显微组织以及扩散氢含量的影响。实验表明,在焊条药皮中添加适量的稀土氧化物可以细化焊缝组织、增加针状铁素体的含量、提高焊缝金属的低温冲击韧性和降低焊缝中扩散氢含量,这是一种经济有效的向熔池中过渡稀土元素的方法,可以在焊接材料中发挥稀土元素的特殊作用。从焊接冶金的角度出发,深入研究了焊条药皮中稀土氧化物向熔池中过渡稀土元素的机理、规律及其影响因素。研究表明,焊条药皮中的稀土氧化物在熔滴的高温阶段可以分解出稀土活性原子并过渡到熔池中,参与焊接冶金反应,对焊接熔池起到进一步脱硫去氧的作用。  相似文献   
73.
The increasing use of titanium alloys in a wider range of applications requires the development of new techniques and processes capable to decrease production costs and manufacturing times. In this regard welding and other joining techniques play an important role. Today, solid state friction joining processes, such as friction stir welding, friction spot welding, inertia friction welding, continuous-drive friction welding and linear friction welding (LFW), represent promising methods for part manufacturing. They allow for joining at temperature essentially below the melting point of the base materials being joined, without the addition of filler metal.However, the knowledge of temperature is essential to understand and model the phenomena involved in metal welding. A global measured value represents only a clue of the heat generation during the process; while, a deep understanding of welding thermal aspects requires temperature field measurement. This paper is focused on the use of infrared thermography applied to the linear friction welding process of Ti6Al4V alloy. The attention is concentrated on thermal field that develops on the outer wall of the two parts to be joined (i.e. heat generated in the friction zone), and on the maximum temperature that characterizes the process before and after the flash formation.  相似文献   
74.
In this work, the effect of eight types of surface treatments on the corrosion resistance of friction stir welded samples of an AA2198-T8 Al-Cu-Li alloy were tested and compared in an attempt to find suitable alternatives to toxic and carcinogenic hexavalent chromium treatments. All the samples were anodized and subjected to different post-anodizing treatments. The post-anodizing treatments were (1) hydrothermal treatment in Ce (NO3)3 6H2O solution; (2) hydrothermal treatment in Ce (NO3)3 6H2O solution with H2O2; (3) hydrothermal treatment in boiling water; (4) hexavalent chromium conversion coating; and (5) immersion in BTSE (bis-1,2-(triethoxysilyl) ethane. The corrosion resistance of the treated samples was evaluated by immersion tests in sodium chloride solution (0.1 mol L−1 NaCl) and electrochemical impedance spectroscopy (EIS) of the friction stir weldment. The results showed that among the alternative treatments, the Ce-containing solutions presented the best corrosion resistance, especially when used without peroxide.  相似文献   
75.
Abstract

This article introduces a new design for a bi-directional optical sub-assembly for fiber-optic gyroscope applications that integrates a super-luminescent light-emitting diode, a photodiode, a beam splitter, an isolator, a fiber receptacle, and a thermal electric cooler. It is less than 1.5 cm in diameter and 2.5 cm in height. As chip temperature was kept at 30°C under environment temperature of ?35°C, 25°C, and 75°C, the bi-directional optical sub-assembly reached stability at a center wavelength of 1,539 nm and a wavelength shift of 1.5 nm. A 3D simple model with the finite-element method was used to analyze thermal performance.  相似文献   
76.
Laser welding is an important joining process for magnesium alloys. These materials are being increasingly used in different applications such as in aerospace, aircraft, automotive, electronics, etc. To date, carbon dioxide (CO2) neodymium-doped yttrium aluminum garnet (Nd:YAG) and the high power diode laser have been extensively used to investigate the weldability of magnesium alloys. The present work describes an analytical thermal model for the weldability of magnesium alloys (WE43) using an industrial (CO2) laser source. The main target of the project is to present to the industrial community a simple and rapid tool for the determination of the penetration depth and the bead width as a function of both the incident laser power and welding speed. The proposed model is based on the Davis thermal approach, largely considered for the characterization of the average radius of the liquid zone, aiming at predicting the joint shape. Moreover, since during the welding process considered in this study, a protecting gas is used to avoid joint oxidation, both thermal convection and radiation phenomena in the welding area have been estimated and introduced in our model for a better characterization of the welding process. The obtained results have been compared to the experimental ones and a satisfactory correlation has been observed, indicating the reliability of the model developed in this study.  相似文献   
77.
This paper presents a fully experimental study on melting, flow and weld strength development during ultrasonic welding of CF/PPS composites with integrated triangular energy directors. The main goal of this research was assessing whether the heating time to achieve maximum weld strength could be significantly reduced as compared to ultrasonic welding with flat energy directors. The main conclusion is that, in the specific case under study, the triangular energy directors did heat up, melt and collapse approximately two times faster than the time it took for the flat energy directors to melt and significantly flow. However the heating time needed to achieve maximum weld strength for the integrated triangular energy directors did not differ drastically from that for flat energy directors. This was caused by the fact that a fully welded overlap was not directly achieved right after the collapsing of the triangular energy directors. Instead a solidified resin-rich interface was created which needed to be re-melted as a whole in order to achieve a fully welded overlap and hence maximum weld strength.  相似文献   
78.
Welding is widely used as a joining method for thermoplastics, and it is imperative to ensure the joining quality, particularly for critical applications. In a previous work by the authors, an Eigen-line was found in the electrofusion joint of polyethylene (PE) pipes based on ultrasonic tests and it could be used to detect and assess cold welding defects. However, the nature of the Eigen-line and reasons for the Eigen-line's existence in ultrasonic images have not yet been fully understood, which limited its applications. In this paper, Eigen-lines were observed in other thermoplastics including polypropylene (PP), polyamide 6 (PA 6), polyoxymethylene (POM) and polyethylene terephthalate (PET), suggesting that Eigen-lines have common existence. Microindentation tests were conducted on specimens cut from electrofusion joints and butt joints of PE pipes. It was found that a significant change of elastic modulus exists around the Eigen-line, which can partly explain the appearance of an Eigen-line in ultrasonic images. Scanning electron microscopy (SEM) and reflective optical microscopy were also employed to explore the nature of the Eigen-line. The results showed that an Eigen-line is a thin layer with polymer chain orientation between base material and welded zone.  相似文献   
79.
A mathematical programming technique developed recently that optimizes multiple correlated characteristics is the Multivariate Mean Square Error (MMSE). The MMSE approach has obtained noteworthy results, by avoiding the production of inappropriate optimal points that can occur when a method fails to take into account a correlation structure. Where the MMSE approach is deficient, however, is in cases where the multiple correlated characteristics need to be optimized with varying degrees of importance. The MMSE approach, in treating all responses as having the same importance, is unable to attribute the desired weights. This paper thus introduces a strategy that weights the responses in the MMSE approach. The method, called the Weighted Multivariate Mean Square Error (WMMSE), utilizes a weighting procedure that integrates Principal Component Analysis (PCA) and Response Surface Methodology (RSM). In doing so, WMMSE obtains uncorrelated weighted objective functions from the original responses. After being mathematically programmed, these functions are optimized by employing optimization algorithms. We applied WMMSE to optimize a stainless steel cladding application executed via the flux-cored arc welding (FCAW) process. Four input parameters and eight response variables were considered. Stainless steel cladding, which carries potential benefits for a variety of industries, takes low cost materials and deposits over their surfaces materials having anti-corrosive properties. Optimal results were confirmed, which ensured the deposition of claddings with defect-free beads exhibiting the desired geometry and demonstrating good productivity indexes.  相似文献   
80.
该文选用6061和2A12航空铝合金薄板材料,进行自冲铆接和超声自冲铆复合连接试验,基于拉伸-剪切和电子显微镜测试,研究超声自冲铆接成形性及力学行为。结果表明:超声自冲铆接头较自冲铆接头的内锁量提升了44.8%;其钉头高度下降了34.4%;超声自冲铆接头的静载强度提升了18.1%,缓冲吸震性能提升了17.5%;超声焊接致使自冲铆接头的铆钉颈部与上板接触区域、铆钉腿部与上板接触区域形成固相焊;超声焊接可有效提高自冲铆接头的稳定性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号