首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   25篇
  国内免费   25篇
化学   728篇
力学   7篇
数学   8篇
物理学   12篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   4篇
  2016年   13篇
  2015年   11篇
  2014年   11篇
  2013年   21篇
  2012年   21篇
  2011年   53篇
  2010年   49篇
  2009年   58篇
  2008年   17篇
  2007年   16篇
  2006年   21篇
  2005年   22篇
  2004年   43篇
  2003年   22篇
  2002年   7篇
  2001年   12篇
  2000年   15篇
  1999年   7篇
  1998年   9篇
  1997年   17篇
  1996年   17篇
  1995年   18篇
  1994年   19篇
  1993年   20篇
  1992年   12篇
  1991年   20篇
  1990年   14篇
  1989年   11篇
  1988年   22篇
  1987年   24篇
  1986年   17篇
  1985年   15篇
  1984年   21篇
  1983年   12篇
  1982年   14篇
  1981年   9篇
  1980年   9篇
  1979年   9篇
  1978年   2篇
排序方式: 共有755条查询结果,搜索用时 46 毫秒
101.
Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable.  相似文献   
102.
103.
104.
In reversed-phase chromatography (RPC), the restricted retention of "bulky" solutes can occur in one of two ways, giving rise to either "shape selectivity" or "steric interaction." Starting with data for 150 solutes and 167 monomeric type-B alkylsilica columns, the present study examines the steric interaction process further and compares it with shape selectivity. The dependence of column hydrophobicity and steric interaction on column properties (ligand length and concentration, pore diameter, end-capping) was determined and compared. The role of the solute in steric interaction was found to be primarily a function of solute molecular length, with longer solutes giving increased steric interaction. We find that there are several distinct differences in the way shape selectivity and steric interaction are affected by separation conditions and the nature of the sample. Of particular interest, steric interaction exhibits a maximum effect for monomeric C(18) columns, and becomes less important for either a C(1) or C(30) column; shape selectivity appears unimportant for monomeric C(1)-C(18) columns at ambient and higher temperatures, but becomes pronounced for C(30) - as well as polymeric columns with ligands ≥C(8). One hypothesis is that shape selectivity involves the presence or creation of cavities within the stationary phase that can accommodate a retained solute (a primarily enthalpic process), while steric interaction mainly makes greater use of spaces that pre-exist the retention of the solute (a primarily entropic process). The related dependence of hydrophobic interaction on column properties was also examined.  相似文献   
105.
The separation properties of five silica packings bonded with 1-[3-(trimethoxysilyl)propyl]urea in the range of 0–3.67 μmol m−2 were investigated in the hydrophilic interaction chromatography (HILIC) elution mode. An increase of the ligand surface density promoted retention of non-charged polar compounds and even more so for acids. An opposite trend was observed for bases, while the amphoteric compound tyrosine exhibited a U-shaped response profile. An overall partitioning retention mechanism was incompatible with these observations; rather, the substantial involvement of adsorptive interactions was implicated. Support for the latter was provided by column-specific changes in analyte retention and concomitant selectivity effects due to variations of salt concentration, type of salt, pH value, organic modifier content, and column temperature. Silica was more selective for separating compounds differing in charge state (e.g. tyramine vs. 4-hydroxybenzoic acid), while in cases where structural differences of solutes resided in non-charged polar groups (e.g. tyramine vs. 5-hydroxydopamine, nucleoside vs. nucleobase) more selective separations were obtained on bonded phases. Hierarchical cluster analysis of the home-made urea-type and three commercial amide-type bonded packings evinced considerable differences in separation properties. The present data emphasise that the role of the packing material under HILIC elution conditions is hardly just the polar support for a dynamic coating with a water-enriched layer. Three major retention mechanisms are claimed to be relevant on bare silica and the urea-type bonded packings: (i) HILIC-type partitioning, (ii) HILIC-type weak adsorption such as hydrogen bonding between solutes and ligands or solutes and silanols (potentially influenced by individual degrees of solvation, salt bridging, etc.), (iii) strong electrostatic (ionic) solute–silanol interactions (attractive/repulsive). Even when non-charged polar bonded phases are used, solute–silanol interactions should not be discounted, which makes them a prime parameter to be characterised by HILIC column tests. Multi/mixed-mode type separations seem to be common under HILIC elution conditions, associated with a great deal of selectivity increments. They are accessible and controllable by a careful choice of the type of packing, the mobile phase composition, and the temperature.  相似文献   
106.
The Interval Correlation Optimised Shifting algorithm (icoshift) has recently been introduced for the alignment of nuclear magnetic resonance spectra. The method is based on an insertion/deletion model to shift intervals of spectra/chromatograms and relies on an efficient Fast Fourier Transform based computation core that allows the alignment of large data sets in a few seconds on a standard personal computer. The potential of this programme for the alignment of chromatographic data is outlined with focus on the model used for the correction function. The efficacy of the algorithm is demonstrated on a chromatographic data set with 45 chromatograms of 64,000 data points. Computation time is significantly reduced compared to the Correlation Optimised Warping (COW) algorithm, which is widely used for the alignment of chromatographic signals. Moreover, icoshift proved to perform better than COW in terms of quality of the alignment (viz. of simplicity and peak factor), but without the need for computationally expensive optimisations of the warping meta-parameters required by COW. Principal component analysis (PCA) is used to show how a significant reduction on data complexity was achieved, improving the ability to highlight chemical differences amongst the samples.  相似文献   
107.
Selected hydrophilic interaction chromatography (HILIC) columns packed with bare silica, bridge-ethyl hybrid silica, or an amide sorbent chemistry were utilized for an investigation of chromatographic behavior and separation selectivity of tryptic peptides. Retention model was proposed allowing for retention prediction of peptides with correlation coefficient R(2)~0.92-0.97 for various columns. The values of optimized amino acid retention coefficients were compared to those obtained for reversed-phase liquid chromatography (Gilar et al., Anal. Chem. 2010, 82, 265-275) and used to elucidate the impact of different amino acid on peptide HILIC retention. In contrast to reversed-phase chromatography, where presence of Phe, Trp, Ile, and Leu amino acid residues in sequence strongly promoted, and presence of hydrophilic His, Lys and Arg residues strongly reduced peptide retention, the effects of these amino acid residues in HILIC were opposite (His, Lys and Arg promote, Phe, Trp, Ile and Leu demote peptide retention in HILIC). Retention coefficient optimized for pH experiments illustrated the impact of silanols on HILIC retention.  相似文献   
108.
More and more polar stationary phases have become available for the separation of small polar compounds in the past decade as hydrophilic interaction chromatography (HILIC) continues to find applications in new fields (e.g., metabolomics and proteomics). Bare silica phases remain popular, especially in the bio-analytical area. A wide range of functional groups (e.g., amino, amide, diol, sulfobetaine, and triazole) have been employed as polar stationary phases for HILIC separation. This review provides a survey of the popular stationary phases commercially available and discusses the retention and selectivity characteristics of the polar stationary phases in HILIC. The purpose of the review is not to provide a comprehensive overview of literature reports, but rather focuses on findings that demonstrate retention and selectivity of the polar stationary phases in HILIC.  相似文献   
109.
We re-examine the problem of budget-constrained demand for insurance indemnification when the insured and the insurer disagree about the likelihoods associated with the realizations of the insurable loss. For ease of comparison with the classical literature, we adopt the original setting of Arrow (1971), but allow for divergence in beliefs between the insurer and the insured; and in particular for singularity between these beliefs, that is, disagreement about zero-probability events. We do not impose the no sabotage condition on admissible indemnities. Instead, we impose a state-verification cost that the insurer can incur in order to verify the loss severity, which rules out ex post moral hazard issues that could otherwise arise from possible misreporting of the loss by the insured. Under a mild consistency requirement between these beliefs that is weaker than the Monotone Likelihood Ratio (MLR) condition, we characterize the optimal indemnity and show that it has a simple two-part structure: full insurance on an event to which the insurer assigns zero probability, and a variable deductible on the complement of this event, which depends on the state of the world through a likelihood ratio. The latter is obtained from a Lebesgue decomposition of the insured’s belief with respect to the insurer’s belief.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号