首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   20篇
  国内免费   14篇
化学   114篇
晶体学   2篇
力学   199篇
综合类   2篇
数学   25篇
物理学   267篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   29篇
  2018年   6篇
  2017年   13篇
  2016年   9篇
  2015年   7篇
  2014年   10篇
  2013年   28篇
  2012年   11篇
  2011年   20篇
  2010年   15篇
  2009年   45篇
  2008年   59篇
  2007年   52篇
  2006年   30篇
  2005年   32篇
  2004年   24篇
  2003年   24篇
  2002年   17篇
  2001年   24篇
  2000年   11篇
  1999年   17篇
  1998年   20篇
  1997年   9篇
  1996年   9篇
  1995年   5篇
  1994年   11篇
  1993年   11篇
  1992年   3篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
61.
With the rapid development of numerical codes for fluid-structure interaction computations, the demand for validation test cases increases. In this paper we present a comparison between numerical and experimental results for such a fluid-structure interaction reference test case. The investigated structural model consists of an aluminum front cylinder with an attached thin metal plate and a rear mass at the trailing edge. All the structure is free to rotate around the axle mounted in the center of the front cylinder. The model's geometry and mechanical properties are chosen in such a way as to attain a self-exciting periodical swiveling movement when exposed to a uniform laminar flow. Reproducibility of the coupled fluid-structure motion is the key criterion for the selection of the model in order to permit an accurate reconstruction of the results in the time-phase space. The Reynolds number of the tests varies up to 270 and within that range the structure undergoes large deformations and shows a strong nonlinear behavior. It also presents two different self-excitation mechanisms depending on the flow velocity. Hence, challenging tasks arise for both the numerical solution algorithm and the experimental measurements. To account for the two different excitation mechanisms observed on increasing the speed of the flow, results for two different velocities are considered: the first at 1.07 m/s (Re=140) and the second at 1.45 m/s (Re=195). The comparisons presented in this paper are carried out on the basis of the time trace of the front body angle, trailing edge coordinates, structure deformation and the time-phase resolved flow velocity field. They reveal very good agreement in some of the fluid-structure interaction modes whereas in others deficiencies are observed that need to be analyzed in more detail.  相似文献   
62.
Suspension of motile gravitactic unicellular algae flowing down in a vertical pipe concentrates near its axis in the form of a thin thread. Such a thread is unstable relative to the travelling nodule-like structures. We study the dynamics of nodules experimentally and describe them in terms of a hydrodynamic model.  相似文献   
63.
Interaction of a premixed flame with a liquid fuel film on a wall   总被引:1,自引:0,他引:1  
In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.  相似文献   
64.
This paper describes a methodology for adapting the acoustoultrasonic technique for use in monitoring structures or mechanical components. As a practical example, the adaptation of the technique for monitoring fatigue tests on front suspension arms is considered. From this particular example, it will be shown that the procedure is suitable for application to more general cases. The results of a number of fatigue tests carried out at the Fiat Research Center on a typical component test rig are also presented.  相似文献   
65.
Polystyrene particles of 9 μm diameter were acoustically concentrated along the axis of a water-filled cylindrical waveguide containing a 3 MHz standing wave field. Modulation of the acoustic field enabled transport of the concentrated particles in the axial direction. Four modulations were investigated; 1, a fixed frequency difference introduced between two transducers; 2, ramping the transducer frequency; 3, tone burst, i.e. sound that is pulsed on and off, allowing intermittent sedimentation under gravity; and 4, switching the sound off to allow continuous sedimentation. The most efficient transport (leaving the fewest particles in suspension) of clumps to one end of the container was achieved with method 1 above. In this system the maximum speed of transport of the axial clumps was 24 mm s-1. A theory developed here for the transport of particles in a pseudo (i.e. slowly moving) standing wave field predicts an upper limit, which increases with particle size, for the speed of an entrained body. For a single 9 μm diameter particle in a field with a spatial peak pressure amplitude of 0.4 MPa this speed would be 0.5 mm s-1. The higher experimental speeds observed here emphasize the value of acoustically concentrating particles into relatively large clumps prior to initiating transport.  相似文献   
66.
A multiple scattering theory of competition effects in diffusion-controlled reactions are presented. We consider a random array of stationary sinks which react with a density field of another reactant. Using the radiation boundary condition to describe the reaction at the surfaces of the sinks, we treat the modification of the density field due to reaction with sinks exactly. By keeping only the most divergent terms in a given order of scattering and summing them, we obtain the rate constant as a function of the sink concentration in the steady state. We also calculate the concentration-dependent diffusion constant of the density field. Both the rate and diffusion constants have nonanalytic behavior in the sink concentration.Alfred P. Sloan Foundation Fellow 1976–1980; John Simon Guggenheim Memorial Fellow 1979–1980.  相似文献   
67.
Lattice Boltzmann simulation of solid particles suspended in fluid   总被引:2,自引:0,他引:2  
The lattice Boltzmann method, an alternative approach to solving a fluid flow system, is used to analyze the dynamics of particles suspended in fluid. The interaction rule between the fluid and the suspended particles is developed for real suspensions where the particle boundaries are treated as no-slip impermeable surfaces. This method correctly and accurately determines the dynamics of single particles and multi-particles suspended in the fluid. With this method, computational time scales linearly with the number of suspensions,N, a significant advantage over other computational techniques which solve the continuum mechanics equations, where the computational time scales asN 3. Also, this method solves the full momentum equations, including the inertia terms, and therefore is not limited to low particle Reynolds number.  相似文献   
68.
A relatively simple, yet efficient and accurate finite difference method is developed for the solution of the unsteady boundary layer equations for both laminar and turbulent flows. The numerical procedure is subjected to rigorous validation tests in the laminar case, comparing its predictions with exact analytical solutions, asymptotic solutions, and/or experimental results. Calculations of periodic laminar boundary layers are performed from low to very high oscillation frequencies, for small and large amplitudes, for zero as well as adverse time-mean pressure gradients, and even in the presence of significant flow reversal. The numerical method is then applied to predict a relatively simple experimental periodic turbulent boundary layer, using two well-known quasi-steady closure models. The predictions are shown to be in good agreement with the measurements, thereby demonstrating the suitability of the present numerical scheme for handling periodic turbulent boundary layers. The method is thus a useful tool for the further development of turbulence models for more complex unsteady flows.  相似文献   
69.
We previously developed a renovated Maxwell model for the effective thermal conductivity of nanofluids and determined that the solid/liquid interfacial layers play an important role in the enhanced thermal conductivity of nanofluids. However, this renovated Maxwell model is limited to suspensions with spherical particles. Here, we extend the Hamilton--Crosser model for suspensions of nonspherical particles to include the effect of a solid/liquid interface. The solid/liquid interface is described as a confocal ellipsoid with a solid particle. The new model for the three-phase suspensions is mathematically expressed in terms of the equivalent thermal conductivity and equivalent volume fraction of anisotropic complex ellipsoids, as well as an empirical shape factor. With a generalized empirical shape factor, the renovated Hamilton--Crosser model correctly predicts the magnitude of the thermal conductivity of nanotube-in-oil nanofluids. At present, this new model is not able to predict the nonlinear behavior of the nanofluid thermal conductivity.  相似文献   
70.
The convergence properties of an iterative solution technique for the Reduced Navier–Stokes equations are examined for two-dimensional steady subsonic flow over bump and trough geometries. Techniques for decreasing the sensitivity to the initial pressure approximation, for fine meshes in particular, are investigated. They are shown to improve the robustness of the relaxation process and to decrease the computational work required to obtain a converged solution. A semi-coarsening multigrid technique that has previously been found to be particularly advantageous for high-Reynolds-number (Re) flows with flow separation and with highly stretched surface-normal grids is applied herein to further accelerate convergence. Solutions are obtained for the laminar flow over a trough that is more severe than has been considered to date. Sufficient axial grid refinement in this case leads to a shock-like reattachment and, for sufficiently large Re, to a local ‘divergence’ of the numerical computations. This ‘laminar flow breakdown’ appears to be related to an instability associated with high-frequency fine-grid modes that are not resolvable with the present modelling. This behaviour may be indicative of dynamic stall or of incipient transition. The breakdown or instability is shown to be controllable by suitable introduction of transition turbulence models or by laminar flow control, i.e. small amounts of wall suction. This lends further support to the hypothesis that the instability is of a physical rather than numerical character and suggests that full three-dimensional analysis is required to properly capture the flow behaviour. Another inference drawn from this investigation is that there is a need for careful grid refinement studies in high-Re flow computations, since coarser grids may yield oscillation-free solutions that cannot be obtained on finer grids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号