首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   3篇
  国内免费   1篇
化学   75篇
晶体学   126篇
物理学   32篇
  2023年   4篇
  2020年   3篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   52篇
  2009年   12篇
  2008年   9篇
  2007年   6篇
  2006年   15篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   47篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1993年   1篇
  1980年   1篇
  1979年   2篇
  1968年   1篇
排序方式: 共有233条查询结果,搜索用时 31 毫秒
21.
Gallium nitride (GaN) nanospindles have been synthesized via a solid-state reaction at a low-temperature condition. X-ray powder diffraction (XRD), Raman spectrum and high-resolution transmission electron microscopy (HRTEM) revealed that the synthesized GaN crystallized in a hexagonal structure and displaying spindly particles morphology has an average diameter of 100 nm and length of 400 nm X-ray photoelectron spectroscopy (XPS) of the sample gave the atomic ratio of Ga and N of 1.04:1. Room-temperature photoluminescence (PL) spectrum showed that the as-prepared product had a peak emission at 372 nm. The possible formation mechanism of the wurtzite GaN is briefly discussed.  相似文献   
22.
The importance of Group III-nitride structures for both light-emitting devices and high-power field effect transistors is well known (J.W. Orton, C.T. Foxon, Rep. Prog. Phys. 61 (1998) 1). In both cases, different alloy composition and doping levels or type are utilised and the device performance also depends critically on the interface quality and defect density. We have used high resolution X-ray scattering to measure the state of strain in the individual layers on an absolute scale to derive the alloy composition, i.e. we have avoided the conventional method of using the substrate as an internal reference since it could be strained. The composition and individual layer thickness are derived through simulation of the profile with this additional strain information and the best-fit profile is obtained with an automatic procedure. These structures are laterally inhomogeneous arising from defects breaking up the structure into narrow vertical columns of nearly perfect material and this produces significant broadening of the diffraction pattern. This broadening in the diffraction pattern has been modelled using an extended dynamical scattering model (P.F. Fewster, X-Ray Scattering from Semiconductors, Imperial College Press, World Scientific, Singapore, 2000) to yield the size distribution of perfect crystal regions. The measurement of the rotation about an axis defined by the growth direction of the GaN with respect to the sapphire is determined and is found to be small. However, a poor quality sample indicates that a large range of rotations is possible in these structures.  相似文献   
23.
Non-polar a-plane GaN thin films were grown on r-plane sapphire substrates by metal-organic chemical vapor deposition. In order to obtain a-plane GaN films with better crystal quality and surface morphology, detailed comparisons between different growth conditions were investigated. The results showed that high-temperature and low-pressure conditions facilitating two-dimensional growth could lead to a fully coalesced a-plane GaN layer with a very smooth surface. The best mean roughness of the surface morphology was 10.5 Å. Various thickness values of AlN nucleation layers and the V/III ratios for growth of the a-plane GaN bulk were also studied to determine the best condition for obtaining a smooth surface morphology of the a-plane GaN layer.  相似文献   
24.
A characterisation by 14N NMR of the binary nitrides AlN and BN is presented. Both the static and magic angle spinning (MAS) lineshapes have been investigated in order to determine, or set upper limits on, the nuclear quadrupole coupling (Cq) at the nitrogen site. Additional data are given for the Cq values at the Al and B sites. A comparison is made with other similar (mainly wurtzite) binary compounds for which Cq is known at each atomic site.  相似文献   
25.
26.
The temperature dependence on the segregation behavior of the ferritic stainless steel single crystal (1 1 1) surface morphology has been examined by scanning tunneling microscopy (STM), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). AES clearly showed the surface segregations of chromium and nitrogen upon annealing. Nanoscale triangular chromium nitride clusters were formed around 650 °C and were regularly aligned in a hexagonal configuration. In contrast, for the ferritic stainless steel (1 1 1) surface with low-nitrogen content, chromium and carbon were found to segregate on the surface upon annealing and Auger spectra of carbon displayed the characteristic carbide peak. For the low-nitrogen surface, LEED identified a facetted surface with (2 × 2) superstructure at 650 °C. High-resolution STM identified a chromium carbide film with segregated carbon atoms randomly located on the surface. The facetted (2 × 2) superstructure changed into a (3 × 3) superstructure with no faceting upon annealing at 750 °C. Also, segregated sulfur seems to contribute to the reconstruction or interfacial relaxation between the ferritic stainless steel (1 1 1) substrate and chromium carbide film.  相似文献   
27.
We present a comparison of the band alignment of the Ga1−xInxNyAs1−y active layers on GaAs and InP substrates in the case of conventionally strained and strain-compensated quantum wells. Our calculated results present that the band alignment of the tensile-strained Ga1−xInxNyAs1−y quantum wells on InP substrates is better than than that of the compressively strained Ga1−xInxNyAs1−y quantum wells on GaAs substrates and both substrates provide deeper conduction wells. Therefore, tensile-strained Ga1−xInxNyAs1−y quantum wells with In concentrations of x0.53 on InP substrates can be used safely from the band alignment point of view when TM polarisation is required. Our calculated results also confirm that strain compensation can be used to balance the strain in the well material and it improves especially the band alignment of dilute nitride Ga1−xInxNyAs1−y active layers on GaAs substrates. Our calculations enlighten the intrinsic superiority of N-based lasers and offer the conventionally strained and strain-compensated Ga1−xInxNyAs1−y laser system on GaAs and InP substrates as ideal candidates for high temperature operation.  相似文献   
28.
The epitaxial growth of GaN layers on sapphire substrates by molecular beam epitaxy at low temperatures (500°C) has been investigated. Samples exhibited a transition from hexagonal to mixed hexagonal/cubic phase under conditions of increasing Ga flux as determined using a TEM-RHEED technique with complementary SEM and PL observations. Embedded cubic grains adopted two domain variants with additional evidence for twinning.  相似文献   
29.
We have investigated the morphology of the high-temperature-grown AlN nucleation layer and its role in the early stage of GaN growth, by means of transmission electron microscopy. The nitride was selectively grown on a 7-degree off-oriented (0 0 1) patterned Si substrate by metalorganic vapor phase epitaxy. AlN was deposited on the inclined unmasked (1 1 1) facet in the form of islands. The size of the islands varied along the slope, which is attributable to the diffusion of the growth species in the vapor phase. The GaN nucleation occurred at the region where rounded AlN islands formed densely. The threading dislocations were observed to generate in the GaN nucleated region.  相似文献   
30.
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号