首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   963篇
  免费   67篇
  国内免费   36篇
化学   45篇
晶体学   1篇
力学   626篇
综合类   8篇
数学   149篇
物理学   237篇
  2023年   2篇
  2022年   9篇
  2021年   15篇
  2020年   29篇
  2019年   19篇
  2018年   22篇
  2017年   21篇
  2016年   39篇
  2015年   41篇
  2014年   46篇
  2013年   72篇
  2012年   53篇
  2011年   55篇
  2010年   38篇
  2009年   62篇
  2008年   70篇
  2007年   53篇
  2006年   51篇
  2005年   50篇
  2004年   35篇
  2003年   26篇
  2002年   36篇
  2001年   25篇
  2000年   18篇
  1999年   26篇
  1998年   20篇
  1997年   26篇
  1996年   11篇
  1995年   10篇
  1994年   15篇
  1993年   24篇
  1992年   8篇
  1991年   11篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1970年   1篇
  1957年   1篇
排序方式: 共有1066条查询结果,搜索用时 639 毫秒
41.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
42.
本文将一种VLES(Very Large Eddy Simulation)模型引入到动网格数值计算中,并验证了VLES模型用于模拟类似振动圆柱绕流的动边界问题的有效性。数值求解了不同振幅和频率下非稳态振动圆柱绕流问题。研究表明:随着振幅和激励频率的增加,绕圆柱流动涡脱离形式从2S模式转换到2P0模式,再到P+S模式。在高振幅和激励频率比fe/fs=0.95时,涡脱离形式却表现为2P0模式到P+S模式的过渡状态,振动圆柱在上升或下降过程中涡的脱离造成在每个周期升力曲线的左右侧发生不规则的"跳动"现象,尽管脱落涡可能为涡对或者单涡.  相似文献   
43.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   
44.
The Fourier method is used to find the analytical solutions to two-dimensional quasistatic problems of stationary polyharmonic vibrations and dissipative heating of a linearly viscoelastic cylinder. The influence of the cylinder thickness and the width of the loading area on the thermomechanical state of the cylinder is studied based on numerical data__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 2, pp. 23–32, February 2005.  相似文献   
45.
We present in this paper a numerical scheme for incompressible Navier–Stokes equations with open and traction boundary conditions, in the framework of pressure-correction methods. A new way to enforce this type of boundary condition is proposed and provides higher pressure and velocity convergence rates in space and time than found in the present state of the art. We illustrate this result by computing some numerical and physical tests. In particular, we establish reference solutions of a laminar flow in a geometry where a bifurcation takes place and of the unsteady flow around a square cylinder.  相似文献   
46.
The electrogravitational instability of on oscillating streaming fluid cylinder under the action of the selfgravitating, capillary and electrodynamic forces has been discussed. The model is governed by the Mathieu second order integro-differential equation. Some limiting cases are recovering from the present general one. The capillary force is destabilizing in a small axisymmetric domain 0<x<1 and stabilizing otherwise. In the absence of electric fields, we found that the model is unstable in a small domain while it is selfgravitating stable in all other domains. The presence of the electric field led to the presence of a great number of stable waves. The electric field has a strong stabilizing influence on the selfgravitating instability of the model. The capillary force has a strong destabilizing influence on the selfgravitating instability of the model.Generally, the uniform stream supports the unstable waves, while the oscillating streaming has stability tendency.  相似文献   
47.
Scattering of obliquely incident plane acoustic waves from immersed infinite solid elastic cylinders is a complex phenomenon that involves generation of various types of surface waves on the body of the cylinder. Mitri [F.G. Mitri, Acoustic backscattering enhancement resulting from the interaction of an obliquely incident plane wave with an infinite cylinder, Ultrasonics 50 (2010) 675-682] recently showed that for a solid aluminum cylinder, there exist acoustic backscattering enhancements at a normalized frequency of ka?0.1. The incidence angle αc at which these enhancements are observed lies between the first (longitudinal) and second (shear) coupling angles of the cylinder. He also confirmed the observations previously reported by the authors that there exist backscattering enhancements of the dipole mode at large angles of incidence where no wave penetration into the cylinder is expected. In this paper, physical explanations are provided for the aforementioned observations by establishing a correlation between helical surface waves generated by oblique insonification of an immersed infinite solid elastic cylinder and the longitudinal and flexural guided modes that can propagate along the cylinder. In particular, it is shown that the backscattering enhancement observed at ka?0.1 is due to the excitation of the first longitudinal guided mode travelling at the bar velocity along the cylinder. It is also demonstrated that the dipole resonance mode observed at incidence angles larger than the Rayleigh coupling angle is associated with the first flexural guided mode of the cylinder. The correlation established between the scattering and propagation problems can be used in both numerical and experimental studies of interaction of mechanical waves with cylinders.  相似文献   
48.
Longitudinal librations represent oscillations about the axis of a rotating axisymmetric fluid filled cavity. An analytical theory is developed for the case of a cylindrical cavity in the limit when the libration frequency is small in comparison with the rotation rate, but large in comparison with the inverse of the spin-up time. It is shown that through the nonlinear advection in the Ekman layers the librations cause the fluid to rotate more slowly.  相似文献   
49.
板状燃料组件在先进核反应堆中得到重要应用.流体以一定的流速轴掠板状组件时会导致板后产生旋涡脱落现象.旋涡脱落有可能引发板状燃料组件的流致振动.使用BELIEF程序,通过改变方柱间距模拟了Re=200情况下刚性矩形通道内不同节距条件下双平行方柱的旋涡脱落现象,得出了双柱间节距对双平行方柱旋涡脱落特性的影响,并进一步对双平...  相似文献   
50.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号