首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4320篇
  免费   224篇
  国内免费   420篇
化学   2983篇
晶体学   26篇
力学   565篇
综合类   18篇
数学   382篇
物理学   990篇
  2024年   12篇
  2023年   316篇
  2022年   88篇
  2021年   97篇
  2020年   132篇
  2019年   140篇
  2018年   109篇
  2017年   126篇
  2016年   144篇
  2015年   126篇
  2014年   158篇
  2013年   246篇
  2012年   354篇
  2011年   290篇
  2010年   233篇
  2009年   290篇
  2008年   256篇
  2007年   265篇
  2006年   228篇
  2005年   174篇
  2004年   183篇
  2003年   128篇
  2002年   94篇
  2001年   102篇
  2000年   84篇
  1999年   74篇
  1998年   81篇
  1997年   80篇
  1996年   55篇
  1995年   42篇
  1994年   32篇
  1993年   42篇
  1992年   35篇
  1991年   30篇
  1990年   21篇
  1989年   13篇
  1988年   11篇
  1987年   4篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1975年   14篇
  1968年   1篇
排序方式: 共有4964条查询结果,搜索用时 15 毫秒
11.
考虑一个奇异摄动罗宾问题在Bakhvalov-Shishkin网格上的迎风差分策略,得到在改进的Shishkin网格上迎风策略是关于ε一致的一阶L∞模收敛的.数值实验证实了此理论结果,显示估计是稳健的.  相似文献   
12.
This paper provides an overview of recent research developments in the field of nanoelectronics with organic materials such as carbon nanotubes and DNA-templated nanowires. Carbon nanotubes and gold electrodes are chemically functionalized in order to contact carbon nanotubes by self-assembly. The transport properties of these nanotubes are dominated by charging effects and display clear Coulomb blockade behaviour. A different approach towards nanoscale electronics is based on the molecular recognition properties of biomolecules such as DNA. As an example, DNA is stretched between electrodes using a molecular combing technique. A two-step metallization procedure leads to the formation of highly conductive gold nanowires.  相似文献   
13.
A parallel DSMC method based on a cell‐based data structure is developed for the efficient simulation of rarefied gas flows on PC‐clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two‐dimensional supersonic leading‐edge flow, the axi‐symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC‐based parallel machines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
14.
The analysis of mechanical structures using the Finite Element Method in the framework of large elastoplastic strain, needs frequent remeshing of the deformed domain during computation. Indeed, the remeshing is due to the large geometrical distortion of finite elements and the adaptation to the physical behavior of the solution. This paper gives the necessary steps to remesh a mechanical structure during large elastoplastic deformations with damage. An important part of this process is constituted by geometrical and physical error estimates. The proposed method is integrated in a computational environment using the ABAQUS/Explicit solver and the BL2D-V2 adaptive mesher. To cite this article: H. Borouchaki et al., C. R. Mecanique 330 (2002) 709–716.  相似文献   
15.
The application of some recently proposed algebraic multilevel methods for the solution of two-dimensional finite element problems on nonuniform meshes is studied. The locally refined meshes are created by the newest vertex mesh refinement method. After the introduction of this refinement technique it is shown that, by combining levels of refinement, a preconditioner of optimal order can be constructed for the case of local refinement along a line. Its relative condition number is accurately estimated. Numerical tests demonstrating the performance of the proposed preconditioners will be reported in a forthcoming paper.  相似文献   
16.
Many recent algorithmic approaches involve the construction of a differential equation model for computational purposes, typically by introducing an artificial time variable. The actual computational model involves a discretization of the now time-dependent differential system, usually employing forward Euler. The resulting dynamics of such an algorithm is then a discrete dynamics, and it is expected to be “close enough” to the dynamics of the continuous system (which is typically easier to analyze) provided that small – hence many – time steps, or iterations, are taken. Indeed, recent papers in inverse problems and image processing routinely report results requiring thousands of iterations to converge. This makes one wonder if and how the computational modeling process can be improved to better reflect the actual properties sought. In this article we elaborate on several problem instances that illustrate the above observations. Algorithms may often lend themselves to a dual interpretation, in terms of a simply discretized differential equation with artificial time and in terms of a simple optimization algorithm; such a dual interpretation can be advantageous. We show how a broader computational modeling approach may possibly lead to algorithms with improved efficiency. AMS subject classification (2000)  65L05, 65M32, 65N21, 65N22, 65D18  相似文献   
17.
High even order generalizations of the traditional upwind method are introduced to solve second order ODE-BVPs without recasting the problem as a first order system. Both theoretical analysis and numerical comparison with central difference schemes of the same order show that these new methods may avoid typical oscillations and achieve high accuracy. Singular perturbation problems are taken into account to emphasize the main features of the proposed methods. AMS subject classification (2000)  65L10, 65L12, 65L50  相似文献   
18.
This paper is concerned with the structure of the singular and regular parts of the solution of time‐harmonic Maxwell's equations in polygonal plane domains and their effective numerical treatment. The asymptotic behaviour of the solution near corner points of the domain is studied by means of discrete Fourier transformation and it is proved that the solution of the boundary value problem does not belong locally to H2 when the boundary of the domain has non‐acute angles. A splitting of the solution into a regular part belonging to the space H2, and an explicitly described singular part is presented. For the numerical treatment of the boundary value problem, we propose a finite element discretization which combines local mesh grading and the singular field methods and derive a priori error estimates that show optimal convergence as known for the classical finite element method for problems with regular solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
19.
Multi-wall carbon nanotubes (MWCNTs) were decorated with metal clusters by thermal evaporation. Transmission electron microscopy (TEM) shows that the nature and extent of metal coverage can be varied by plasma treating the MWCNT surface. The metal clusters on oxygen plasma treated arc-discharge MWCNTs have a more dense distribution than the clusters evaporated on as-synthesized arc-discharge MWCNTs. In contrast, the plasma treatment did not affect the cluster distribution on CVD MWCNTs. Analyses of the valence band and the core levels by X-ray photoelectron spectroscopy suggest poor charge transfer between gold clusters and MWCNTs; on the contrary suggest good charge transfer between Ni clusters and MWCNTs.  相似文献   
20.
A finite volume solver for the 2D depth‐integrated harmonic hyperbolic formulation of the mild‐slope equation for wave propagation is presented and discussed. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov‐type second‐order finite volume scheme, whereby the numerical fluxes are computed using Roe's flux function. The eigensystem of the mild‐slope equations is derived and used for the construction of Roe's matrix. A formulation that updates the unknown variables in time implicitly is presented, which produces a more accurate and reliable scheme than hitherto available. Boundary conditions for different types of boundaries are also derived. The agreement of the computed results with analytical results for a range of wave propagation/transformation problems is very good, and the model is found to be virtually paraxiality‐free. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号