首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1273篇
  免费   202篇
  国内免费   111篇
化学   1046篇
晶体学   7篇
力学   77篇
综合类   3篇
数学   25篇
物理学   428篇
  2024年   6篇
  2023年   63篇
  2022年   36篇
  2021年   52篇
  2020年   42篇
  2019年   28篇
  2018年   18篇
  2017年   33篇
  2016年   47篇
  2015年   35篇
  2014年   74篇
  2013年   75篇
  2012年   62篇
  2011年   79篇
  2010年   72篇
  2009年   103篇
  2008年   167篇
  2007年   85篇
  2006年   92篇
  2005年   65篇
  2004年   51篇
  2003年   28篇
  2002年   28篇
  2001年   30篇
  2000年   19篇
  1999年   21篇
  1998年   20篇
  1997年   18篇
  1996年   33篇
  1995年   20篇
  1994年   18篇
  1993年   13篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1970年   1篇
排序方式: 共有1586条查询结果,搜索用时 156 毫秒
101.
The shape of the newly described torocyte red blood cell endovesicles induced by octaethyleneglycol dodecylether (C12E8) is characterized. A possible explanation for the origin and stability of the observed torocyte endovesicles is suggested. Three partly complementary mechanisms are outlined, all originating from the interaction of C12E8 molecules with the membrane. The first is a preferential intercalation of the C12E8 molecule into the inner membrane layer, resulting in a membrane invagination which may finally close, forming an inside-out endovesicle. The second is a preference of the C12E8-induced membrane inclusions (clusters) for small local curvature which would favour torocyte endovesicle shape with large regions of small or even negative membrane mean curvatures, the C12E8 membrane inclusion being defined as a complex composed of the embedded C12E8 molecule and some adjacent phospholipid molecules which are significantly distorted due to the presence of the embedded C12E8 molecule. The preference of the C12E8 inclusions for zero or negative local curvature may also lead to the nonhomogeneous lateral distribution of the C12E8 inclusions resulting in their accumulation in the membrane of torocyte endovesicles. The third possible mechanism is orientational ordering of the C12E8-induced inclusions in the regions of torocyte endovesicles with high local membrane curvature deviator.  相似文献   
102.
Unlike thermal processes such as distillation, pervaporation relies on the relative rates of solute permeation through a membrane and is a combination of evaporation and gas diffusion. The analytical pervaporation systems consist of a membrane module suitable for liquid sample introduction and a vacuum (or a sweeping gas) on the permeate side. It has been used in a wide range of applications including the analysis of various organic and inorganic compounds, and sample concentration. It has been directly interfaced with gas chromatography, spectrophotometry, capillary electrophoresis, electrochemical detectors, liquid chromatography, and mass spectrometry. A wide range of liquids, slurries, and solids samples has been analyzed using these techniques. This review highlights the basic principles of the pervaporation and the state of its current development as applied to analytical chemistry.  相似文献   
103.
The increase use of ion sensors in the fields of environmental, agricultural, and medical analysis is stimulating analytical chemists to develop new sensors for fast, accurate, reproducible, and selective determination of various ions. In this study a new samarium membrane sensor was constructed and for the first time, it was applied as a probe in indirect determination of hyoscine, homatropine, and tramadol drugs in their pharmaceutical formulation. The proposed membrane sensor was constructed based on a membrane containing 2% sodium tetraphenyl borate (NaTPB) as an anionic additive, 63% dibutyl phthalate (DBP) as solvent mediator, 5% ionophore, and 30% poly(vinyl chloride) (PVC). The proposed Sm(III) electrode exhibits a Nernstian response of 19.35±0.2 mV per decade of samarium concentration, and has a lower detection limit of 1.0×10?7 M. The linear range of the sensors was 1.0×10?7–1.0×10?1 M. It works well in the pH range of 3.0–8.0.  相似文献   
104.
The effect of the thin membrane on the time evolution of the shock wave induced turbulent mixing between the two gases initially separated by it is investigated using two different sets of experiments. In the first set, in which a single-mode large-amplitude initial perturbation was studied, two gas combinations (air/SF and air/air) and two membrane thicknesses were used. The main conclusion of these experiments was that the tested membrane has a negligible effect on the evolution of the mixing zone, which evolves as predicted theoretically. In the second set, in which similar gas combinations and membrane thicknesses were used, small amplitude random-mode initial perturbation, caused by the membrane rupture, rather than the large amplitude single-mode initial perturbation used in the first set, was studied. The conclusions of these experiments were: (1) The membrane has a significant effect on the mixing zone during the initial stages of its growth. This has also been observed in the air/air experiment where theoretically no growth should exist. (2) The membrane effect on the late time evolution, where the mixing zone width has reached a relatively large-amplitude, was relatively small and in good agreement with full numerical simulations. The main conclusion from the present experiments is that the effect of the membrane is important only during the initial stages of the evolution (before the re-shock), when the perturbations have very small amplitudes, and is negligible when the perturbations reach relatively large amplitudes. Received 29 August 1998 / Accepted 25 December 1998  相似文献   
105.
The diffusion phenomena were analyzed using the phenomenological equations of the thermodynamics of irreversible processes. The diffusion coefficient was thought to be dependent on local concentrations and pressure, unlike it was done in the linear theories. The reversible chemical reactions were modeled as intermolecular interaction. The ideal and regular solutions and solutions, described by the Margules's and Sketchard–Hammer's equations, were investigated and analytical solutions were found.  相似文献   
106.
In this paper, a new fouling measurement method is presented as a pragmatic approach to determine a mixed liquor's fouling propensity. The MBR-VFM (VITO Fouling Measurement) uses a specific measurement protocol consisting of alternating filtration and physical cleaning steps, which enables the calculation of both the reversible and the irreversible fouling resistances. The MBR-VFM principle, set-up and measurement protocol are described as well as the evaluation of the fouling measurement method. Finally, the MBR-VFM was validated by comparing the fouling propensity measured on-line by the MBR-VFM in a lab-scale MBR with the fouling of the MBR membranes themselves. Our experiments indicated that the MBR-VFM can accurately measure fouling and that it can even be detected earlier than can be seen from the on-line filtration data of the lab-scale system itself. Furthermore, the differences measured in reversible and irreversible fouling seemed to be related to the observed impact of physical and chemical cleaning respectively. Therefore, the application of the MBR-VFM as an on-line sensor in an advanced control system, enabling the deployment of the measured fouling data for the control of membrane cleaning, seems feasible and will be tested in the near future.  相似文献   
107.
Free-standing lipid bilayers are formed in regularly arranged nanopores of 200, 400 and 800 nm in a 300 nm thin hydrophobic silicon nitride membrane separating two fluid compartments. The extraordinary stability of the lipid bilayers allows us to monitor channel formation of the model peptide melittin and α-hemolysin from Staphylococcus aureus using electrochemical impedance spectroscopy and chronoamperometry. We observed that melittin channel formation is voltage-dependent and transient, whereas transmembrane heptameric α-hemolysin channels in nano-BLMs persist for hours. The onset of α-hemolysin-mediated conduction depends on the applied protein concentration and strongly on the diameter of the nanopores. Heptameric channel formation from adsorbed α-hemolysin monomers needs more time in bilayers suspended in 200 nm pores compared to bilayers in pores of 400 and 800 nm diameters. Diffusion of sodium ions across α-hemolysin channels present in a sufficiently high number in the bilayers was quantitatively and specifically determined using ion selective electrodes. The results demonstrate that relatively small variations of nano-dimensions have a tremendous effect on observable dynamic biomolecular processes. Such nanopore chips are potentially useful as supports for stable lipid bilayers to establish functional assays of membrane proteins needed in basic research and drug discovery.  相似文献   
108.
Real-time analysis of gases for volatile organic compounds or elements is required for a number of applications. Direct sampling-mass spectrometry (DS-MS) is one approach to solve these analytical problems. This article reviews various instrumental configurations and applications of DS-MS. Inlet systems employed for DS-MS include membranes, microtrap interfaces, atmospheric sampling glow discharge ionization, atmospheric pressure ionization, microwave plasma ionization, and capillary restrictors. The use of laser-based ionization methods for DS-MS is described, including resonance-enhanced multiphoton ionization and single photon ionization.  相似文献   
109.
A series of sulfonated copolyimides containing benzimidazole groups (SPIs) were synthesized by random copolymerization of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 2-(4-aminophenyl)-5-aminobenzimidazole (APABI), 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 9,9-bis(4-aminophenyl)fluorene (BAPF) in m-cresol in the presence of benzoic acid and triethylamine at 180 °C for 20 h. Membranes with good mechanical properties were prepared by solution cast method. Proton exchange treatment resulted in ionic cross-linking and the membranes were further covalently cross-linked by treating them in polyphosphoric acid (PPA) at 180 °C for 6 h. The covalently cross-linked membranes displayed slightly lower ion exchange capacities (IECs) and proton conductivities than the corresponding covalently uncross-linked ones because small part of the sulfonic acid groups had been consumed during the cross-linking process. Fenton’s test (3% H2O2 + 3 ppm FeSO4, 80 °C) revealed that benzimidazole groups played an important role in the radical oxidative stability of the membranes, while the cooperative effect of benzimidazole groups and covalent cross-linking led to much more significant enhancements in the radical oxidative stability of the membranes than each alone. The membrane 4 (ODADS/APABI/BAPF = 2/1/1, by mol), for example, after covalent cross-linking could maintain membrane form within 8 h measurement, which was much longer than that (3 h) before covalent cross-linking under the same conditions. The membrane 5 (ODADS/BAPF = 3/1, by mol) without benzimidazole groups, however, after covalent cross-linking started to break into pieces after 85 min measurement, which was only slightly longer than that (60 min) before cross-linking under the same conditions.  相似文献   
110.
This paper reports on the effect of pH on the retention of dry matter (DM), total ammonia-nitrogen (TAN), potassium, phosphorus and volatile fatty acids (VFAs) during the filtration of pretreated swine manure by three highly selective reverse osmosis (RO) membranes. The manure was pretreated using various combinations of biological and physical technologies, namely anaerobic digestion (AD), vacuum filtration through diatomaceous earth (DE), nanofiltration (NF), and a first stage RO filtration. The objective was to establish the level of acidification required to optimize permeate quality while minimizing chemical addition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号