首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   137篇
  国内免费   21篇
化学   95篇
晶体学   43篇
力学   933篇
综合类   5篇
数学   333篇
物理学   566篇
  2024年   1篇
  2023年   10篇
  2022年   20篇
  2021年   30篇
  2020年   32篇
  2019年   28篇
  2018年   39篇
  2017年   34篇
  2016年   33篇
  2015年   47篇
  2014年   50篇
  2013年   123篇
  2012年   73篇
  2011年   123篇
  2010年   65篇
  2009年   115篇
  2008年   117篇
  2007年   115篇
  2006年   112篇
  2005年   97篇
  2004年   103篇
  2003年   84篇
  2002年   66篇
  2001年   36篇
  2000年   54篇
  1999年   50篇
  1998年   37篇
  1997年   36篇
  1996年   37篇
  1995年   22篇
  1994年   18篇
  1993年   23篇
  1992年   18篇
  1991年   23篇
  1990年   21篇
  1989年   10篇
  1988年   22篇
  1987年   6篇
  1986年   10篇
  1985年   10篇
  1984年   10篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
排序方式: 共有1975条查询结果,搜索用时 281 毫秒
71.
The two‐dimensional time‐dependent Navier–Stokes equations in terms of the vorticity and the stream function are solved numerically by using the coupling of the dual reciprocity boundary element method (DRBEM) in space with the differential quadrature method (DQM) in time. In DRBEM application, the convective and the time derivative terms in the vorticity transport equation are considered as the nonhomogeneity in the equation and are approximated by radial basis functions. The solution to the Poisson equation, which links stream function and vorticity with an initial vorticity guess, produces velocity components in turn for the solution to vorticity transport equation. The DRBEM formulation of the vorticity transport equation results in an initial value problem represented by a system of first‐order ordinary differential equations in time. When the DQM discretizes this system in time direction, we obtain a system of linear algebraic equations, which gives the solution vector for vorticity at any required time level. The procedure outlined here is also applied to solve the problem of two‐dimensional natural convection in a cavity by utilizing an iteration among the stream function, the vorticity transport and the energy equations as well. The test problems include two‐dimensional flow in a cavity when a force is present, the lid‐driven cavity and the natural convection in a square cavity. The numerical results are visualized in terms of stream function, vorticity and temperature contours for several values of Reynolds (Re) and Rayleigh (Ra) numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
72.
The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr) . The numerical results show that for high Weissemberg numbers (We>7.4 × 10?5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr>17 × 10?4) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
73.
This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering the layout of flow/non‐flow regions subject to a constraint on the pressure drop between inlet and outlet. For a square cross‐sectioned pipe the mixing is increased by 70% compared with a straight pipe at the cost of a 2.5 fold increase in pressure drop. Another example where only the bottom profile of the channel is a design domain results in intricate herring bone patterns that confirm findings from the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
74.
This work studied three emerging approaches to improve the convective drying (50 °C, 0.8 m/s) of celery. Celery slices of 2 mm thick were pretreated for 5 min using ultrasound (32 W/L, 40 kHz), vacuum (75 kPa vacuum pressure) and ethanol (99.8% v/v, as drying accelerator) applied individually or in combination. To evaluate individual effects of ultrasound and vacuum, the treatments were also performed with distilled water or air medium, respectively. Moreover, the cavitational level was characterized in each condition. Drying kinetics was evaluated tending into account the drying time required by each treatment and the Page’s model parameters. In addition, microstructural effects and shrinkage were evaluated. As results, ethanol combined with ultrasound significantly improved drying kinetics reducing drying time by around 38%. However, vacuum pretreatment did not affect drying kinetics even in combination with ethanol and/or ultrasound. Microstructural evaluation did not evidence cell disruption, suggesting changes in intercellular spaces, pores and/or cell wall permeability. The use of ethanol and vacuum showed a greater effect on shrinkage after pretreatment and after drying, respectively. In conclusion, at the studied conditions, the drying acceleration by vacuum and ultrasound is lower compared to the effect produced using ethanol.  相似文献   
75.
本文采用RNG k-ε湍流模型对超临界CO2/DME(二甲醚)二元混合工质在竖直圆管内的传热特性进行了数值模拟研究。管径4 mm,管长为1000 mm;CO2/DME浓度配比分别为97/3、95/5、92/8、90/10、85/15、以及70/30;质量流速为125~200 kg·m-2.s-1;热流密度为15~30 kW.m-2,入口温度295~308 K,入口压力8~15 MPa。不同浓度配比的混合工质在各自临界压力下应用时,随着DME浓度的增加,换热系数的峰值逐渐减低,但在温度大于310 K时混合工质的换热系数会高于纯CO2。压力相同时,随着DME浓度的增大,拟临界温度升高,换热系数峰值点也随之向温度升高的方向移动。混合工质的换热系数随质量流速的增大而增大。在拟临界点前,增大热流密度及降低压力对管内传热有利,而在拟临界点之后,换热系数随热流密度的升高以及压力的降低而降低。  相似文献   
76.
The vaporization of multicomponent fuel droplets was studied experimentally in a heated flow and the results were compared to the model proposed by Abramzon and Sirignano. The droplet was suspended on a permanent holder which was set up in a thermal wind-tunnel. This wind-tunnel was fitted with a video recording system and an infra-red camera. The period during which the droplet was suspended on the holder before the opening of the hot air flow damper was recorded. This first sequence corresponds to the droplet vaporization in natural convection, whose initial experiment conditions, especially diameter, temperature, composition of the droplet, are well known. Then the damper was turn on, and the sequence of forced convection begun. The initial diameter of the droplet was recorded by the video system. The other initial conditions of this second sequence cannot be determined experimentally. The distribution of temperature in the droplet and the surface temperature, the mass fraction distribution in the droplet and the surface mass fraction were unknown. These unknown parameters were determined by coupling our experiment with a model using “the film concept” in natural convection. Experimental results were compared with the calculations and found satisfactory, in natural convection as well as in forced convection initiated by this method. The method was tested in the case of a fuel mixture droplets (heptane–decane) for different initial concentrations and variable durations of the sequence in natural convection.  相似文献   
77.
Steady laminar forced convection gaseous slip-flow through parallel-plates micro-channel filled with porous medium under Local Thermal Non-Equilibrium (LTNE) condition is studied numerically. We consider incompressible Newtonian gas flow, which is hydrodynamically fully developed while thermally is developing. The Darcy–Brinkman–Forchheimer model embedded in the Navier–Stokes equations is used to model the flow within the porous domain. The present study reports the effect of several operating parameters on velocity slip and temperature jump at the wall. Mainly, the current study demonstrates the effects of: Knudsen number (Kn), Darcy number (Da), Forchheimer number (Γ), Peclet number (Pe), Biot number (Bi), and effective thermal conductivity ratio (K R) on velocity slip and temperature jump at the wall. Results are given in terms of skin friction (C f Re *) and Nusselt number (Nu). It is found that the skin friction: (1) increases as Darcy number increases; (2) decreases as Forchheimer number or Knudsen number increases. Heat transfer is found to (1) decreases as the Knudsen number, Forchheimer number, or K R increases; (2) increases as the Peclet number, Darcy number, or Biot number increases.  相似文献   
78.
本文用有限解析差分格式研究在多孔介质中化学输运问题的数值模型,系统地计算结果表明:1.有限解析差分格式能够消除数值弥散和伪振荡; 2.随着弥散数(Peclct数)的减小(增加),浓度突破曲线将延迟到达和形状变陡,最终趋近浓度对流曲线;3.当流速数增加后,非稳态吸附对浓度分布的影响趋近稳态吸附的影响。  相似文献   
79.
浮力对混合对流流动及换热特性的影响   总被引:1,自引:0,他引:1  
用热线和冷线相结合的技术测量垂直圆管内逆混合对流流体的平均速度、 温度以及它们的脉动. 较详细地研究了浮力对逆混合对流的流动特性和传热特性的影响. 评 估了实验中采用的冷线测量温度补偿速度探头温度敏感的影响. 逆混合对流的传热结果用无 量纲参数Ω (Ω= Grd / Red2 )来表示,其中,基于管道直 径的雷诺数Red变化范围为900~18000, 浮力参数Ω变化范围为 0.004899~0.5047. 研究结果表明,浮力对逆混合对流的换热有强化作用. 随着葛拉晓夫数Grd的增加,温度脉动,流向雷诺正应力和流向温度通量增 大,并且在靠近壁面的流体区域尤其明显. 热线与冷线相结合的技术适合于研究非绝热的流 动测量,可以用于研究浮力对流动和换热特性的影响.  相似文献   
80.
We consider the onset of convection in a porous medium heated from below and subjected to a horizontal mean flow. The effect of porous inertia is studied, and the transverse aspect ratio a of the medium is taken into accout. We find that the dominant modes are longitudinal rolls (L.R) if a is an integer or transverse traveling rolls (T.R) if a is below ac with ac<1. When a is not an integer with a>ac, the setting on patterns are oscillatory three-dimensional structures (3D) for a>1 or T.R for ac<a<1 provided that the Reynolds number remains below a critical value ReK*. We show that these structures are replaced by L.R if ReK>ReK*. To cite this article: A. Delache et al., C. R. Mecanique 330 (2002) 885–891.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号