首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13302篇
  免费   1399篇
  国内免费   1069篇
化学   6389篇
晶体学   107篇
力学   662篇
综合类   42篇
数学   425篇
物理学   8145篇
  2024年   8篇
  2023年   114篇
  2022年   243篇
  2021年   280篇
  2020年   354篇
  2019年   336篇
  2018年   349篇
  2017年   331篇
  2016年   508篇
  2015年   462篇
  2014年   613篇
  2013年   890篇
  2012年   1203篇
  2011年   1289篇
  2010年   932篇
  2009年   1060篇
  2008年   896篇
  2007年   1014篇
  2006年   728篇
  2005年   561篇
  2004年   495篇
  2003年   411篇
  2002年   444篇
  2001年   301篇
  2000年   303篇
  1999年   243篇
  1998年   237篇
  1997年   145篇
  1996年   108篇
  1995年   129篇
  1994年   91篇
  1993年   124篇
  1992年   73篇
  1991年   66篇
  1990年   58篇
  1989年   41篇
  1988年   44篇
  1987年   28篇
  1986年   34篇
  1985年   39篇
  1984年   36篇
  1983年   16篇
  1982年   29篇
  1981年   21篇
  1980年   17篇
  1979年   18篇
  1978年   10篇
  1977年   6篇
  1976年   9篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
971.
Physical properties of NdPd2Ge2 and NdAg2Ge2, crystallizing with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric, electrical transport as well as by neutron diffraction measurements. The specific heat studies and neutron diffraction measurements were performed down to 0.30 K and 0.47 K, respectively. Both compounds exhibit antiferromagnetic ordering below TN equal to 1.5 K for NdPd2Ge2 and 1.8 K for NdAg2Ge2. Neutron diffraction data for the latter germanide indicate antiferromagnetic collinear structure described by the propagation vector k=(0.5, 0, 0.5). The Nd magnetic moments equal to 2.24(5) μB at 0.47 K are aligned along the a-axis and have the +− sequence within the crystal unit cell. For NdPd2Ge2 only very small Bragg peaks of magnetic origin were observed in the neutron diffraction patterns measured below TN, thus hampering determination of the magnetic structure. Both compounds exhibit metallic-like electrical conduction. From the specific heat data the crystal electric field (CEF) levels schemes were determined. Difference between the overall CEF splitting in the two compounds is correlated with their structural parameters.  相似文献   
972.
Substitution of Fe for Sc in CoFe2O4 spinel structure is presented. All CoFe2−xScxO4 compounds crystallize in the spinel type structure (space group Fd3?m). By using X-ray diffraction studies, magnetic measurements and in-field 57Fe Mössbauer spectrometry, the limit of substitution has been determined to be equal to x=0.56. An increase in the cell parameter and the strains and a decrease in the apparent crystallites size are observed. For x>0.3, a partial oxidation of cobalt is evidenced and Co3+ is stabilized in the structure. A ferromagnetic behavior has been observed for all investigated compounds. As x increases, the Curie temperature and the hyperfine fields decrease. Following the Stephenson model, the diminution of TC is ascribed to a decrease of the main JAB interaction.  相似文献   
973.
Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.  相似文献   
974.
The crystal structure of the Zr1−xYxNiSn half-Heusler solid solutions is synthesized and their crystal structure is determined. Electrical resistivity and thermoelectric Seebeck coefficient are measured in the 80-380 K temperature range, whereas magnetic susceptibility is measured at 290 K. It is established that substitution of Zr host atoms by Y in the ZrNiSn intermetallic semiconductor is equivalent to doping by acceptor impurities. Self-consistent ab initio calculations, based on the full potential local orbital (FPLO) minimum basis method, are performed to investigate the electronic and thermoelectric properties of these alloys. Spin polarized within the framework of the coherent potential approximation (CPA) are included.  相似文献   
975.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   
976.
Fe-NiO nanocomposites with Fe to NiO ratio 20:80, 30:70 and 50:50 were prepared by a chemical route. X-ray diffraction and TEM measurements showed the presence of α-Fe and NiO phases in the prepared nanocomposites having an average crystallite size 17 nm. HRTEM image showed a structurally disordered phase at the Fe-NiO interface. Mössbauer spectra of the nanocomposites consist of a doublet along with a sextet corresponding to relaxed and blocked α-Fe phases, respectively. The dc magnetization measurements in field-cooled condition show a shift of hysteresis loop and an enhancement of coercive field at low temperature confirming the presence of exchange bias at Fe-NiO interfaces. The irreversibility observed in the FC and ZFC magnetization measurements also points to exchange bias effect.  相似文献   
977.
I. Ko anov  J. Kuchr  M. Orend   J. ernk 《Polyhedron》2010,29(18):3963-3379
Two new complexes [Ni(bpy)3][Cu(CN)3]·4.5H2O (1) and [Cu(bpy)2(CN)]2[Ni(CN)4]·4H2O (2) (bpy = 2,2′-bipyridine) have been synthesized from aqueous-ethanolic solution. The crystal structures of both 1 and 2 are ionic. The crystal structure of 1 is built up of [Ni(bpy)3]2+ and [Cu(CN)3]2− complex ions, and disordered solvated water molecules. While the Ni(II) atom is octahedrally coordinated by three chelate bonded bidentate bpy ligands with Ni–N bond 2.0851(1) Å (6×), the Cu(I) atom is in trigonal coordination with Cu–C bond 1.9440(1) Å (3×). Crystal structure of 2 consists of a rare [Cu(bpy)2(CN)]+ complex cations, [Ni(CN)4]2− complex anions (ratio 2:1) and solvated water molecules; in the complex cation the Cu(II) atom is penta-coordinated with terminal cyanido ligand. In both crystal structures the not coordinated water molecules are involved in hydrogen bonding. Thermal study on air of both 1 and 2 did not indicate formation of a stable intermediate; the solid residues are formed of a mixture of CuO and NiO. Magnetic susceptibilities of both 1 and 2 are described by Curie–Weiss behavior with θ values of −1.37 K (1) and −0.54 K (2) due to the action of weak antiferromagnetic interactions in 1 and 2, respectively.  相似文献   
978.
A new complex of unusual composition [Cu(3-O2Nbz)2(nia)(H2O)2] (1) (nia = nicotinamide, 3-O2Nbz = 3-nitrobenzoate) has been prepared and studied together with two other complexes of composition [Cu(4-O2Nbz)2(nia)2(H2O)2] (2) and [Cu(4-O2Nbz)2(nia)2]?(4-O2NbzH)2 (3) (4-O2Nbz = 4-nitrobenzoate). The composition of all complexes has been determined by elemental analysis, the complexes have been studied by electronic, infrared and EPR spectroscopy, as well as by magnetization measurements over the temperature range 1.8–300 K, and their structures have been solved. The structure of complex (1) consists of molecules, where Cu(II) atom is monodentately coordinated by the pair of 3-nitrobenzoato anions in trans  -positions together with water and nicotinamide molecules, forming nearly tetragonal basal plane, and by another water molecule in axial position of tetragonal-pyramidal coordination polyhedron. The neighboring molecule coordination polyhedron basal planes are coplanar and allow formation of supramolecular dimers with strong H-bonds between hydrogen atoms from equatorially coordinated water molecules and uncoordinated carboxylate oxygen atoms thus giving the nearest Cu??Cu distance of 4.886(2) Å. Magnetization measurements showed that complex (1) exhibits maximum of magnetic susceptibility at 6.5 K and a fit to Bleaney-Bowers equation gave singlet–triplet energy gap 2J = −6.25 cm−1, and zJ′ = −0.03 cm−1. This might be an experimental proof that the carboxylate bridges extended with hydrogen bonds are the pathway of the spin–spin interactions. The temperature dependence of changes in EPR spectra of (1) and the spectrum at 4.2 K have confirmed its hydrogen bonded dimeric structure. The calculated Cu??Cu distance 4.8 Å is in very good agreement with the value obtained from crystal structure. The complexes (2) and (3) at 300 K exhibit magnetic moment μeff = 1.98 B.M. and μeff = 1.84 B.M., respectively. These values practically do not change with lowering the temperature up to 5 K and only small drops to μeff = 1.87 B.M. (for (2)) and μeff = 1.79 B.M. (for (3)) at 1.8 K have been observed. The EPR spectra of complex (2) at room temperature as well as at 77 K are of axial type with g = 2.062 and g|| = 2.285 and exhibit resolved parallel hyperfine splitting with A|| = 160 Gauss. The EPR spectra of complex (3) at room temperature as well as at 77 K are of axial type with g = 2.065 and g|| = 2.235 and exhibit unresolved parallel hyperfine splitting. EPR spectra of (2) and (3) are consistent with the X-ray structure.  相似文献   
979.
A series of lanthanide(III) complexes with chelidamic acid ligand, [Ln(C7H2NO5)·3H2O]n·nH2O (Ln = La (1), Y (2), Sm (3), and Nd (4)), [Gd2(C7H2NO5)3·4H2O]n·2nH2O (5) and [Ce(C7H2NO5)·1.5H2O]n (6), have been synthesized by hydrothermal method and structurally characterized by single-crystal X-ray diffraction. Complexes 14 are isostructural and possess 2D framework. Complex 5 contains two different Gd(III) ions linked through carboxylate group to form a 2D framework. Complex 6 exhibits a (44) topology 2D network. The variable-temperature magnetic properties of 3 and 5 have been investigated. Furthermore, the photoluminescent properties of 1, 2, 3, and 5 at room temperature were also studied.  相似文献   
980.
A series of Cr(III) dimers were synthesized from a parent compound [Cr2(μ-oxo)21,2-C4O4)2(H2O)4]·2H2O (I) by ligand substitution. The compounds have been analyzed using variable frequency EPR (9–110 GHz) and magnetic susceptibility as a function of field (0–9 T) and temperature (1.9–300 K) to obtain their electronic g-values, exchange energies, and zero-field parameters. The parent compound exhibits a broad maximum around 34 K characteristic of a dimer with antiferromagnetic coupling that fit the Van Vleck susceptibility model well. It was found that the maxima could be tuned from 34 to 80 K by ligand substitution of the waters. Each compound possesses a characteristic color spanning the range of teal to pink. The g-value of each compound was found to be ∼1.98 using spectral simulation. The DMSO derivative is water soluble and has a high LC50 for PC3 cancer cells, suggesting its use as a magnetic resonance imaging agent. X-ray crystal structure of the DMSO derivative [Cr2(μ-oxo)21,2-C4O4)2(C2H6SO)4]·2H2O (II) revealed that the DMSO ligands are equatorial, and the squarate groups bridge the two chromiums. This is in contrast to the previously proposed structure of the parent compound where the water ligands were axial and the equatorial squarate groups did not bridge the chromiums. These compounds are interesting because of their ease of synthesis, and their wide range of magnetic behavior. The compounds are good probes into antiferromagnetic dimer exchange by controlling the ligand field surrounding the superexchange pathway present in the molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号