首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   46篇
  国内免费   27篇
化学   239篇
晶体学   3篇
力学   8篇
综合类   4篇
数学   11篇
物理学   810篇
  2024年   2篇
  2023年   10篇
  2022年   22篇
  2021年   25篇
  2020年   32篇
  2019年   25篇
  2018年   25篇
  2017年   24篇
  2016年   26篇
  2015年   25篇
  2014年   81篇
  2013年   102篇
  2012年   84篇
  2011年   56篇
  2010年   76篇
  2009年   80篇
  2008年   77篇
  2007年   66篇
  2006年   23篇
  2005年   31篇
  2004年   17篇
  2003年   28篇
  2002年   11篇
  2001年   8篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   16篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1985年   4篇
  1984年   1篇
排序方式: 共有1075条查询结果,搜索用时 15 毫秒
991.
A magnetization-preparation scheme is described that combines the spin-echo and inversion-recovery (SEIR) to select spins based on both T1 and T2 characteristics. The inclusion of T2 weighting allows for greater relative suppression of some tissues with respect to others, depending on their respective relaxation times, than does inversion-recovery alone. Formulae describing the observed magnetization following SEIR and double-SEIR (DSEIR) are presented with the corresponding formulae for inversion-recovery (IR) and double-IR (DIR). The formulae are validated with experimental studies on MnCl2 solutions and compared numerically for a variety of possible applications. Results indicate that DSEIR may yield 2x or more signal than DIR in some potential applications.  相似文献   
992.
Gas transport across polymeric membranes is fundamental to many filtering and separation technologies. To elucidate transport mechanisms, and understand the behaviors of membrane materials, accurate measurement of transport properties is required. We report a new magnetic resonance imaging (MRI) methodology to measure membrane gas phase diffusion coefficients. The MRI challenges of low spin density and short gas phase relaxation times, especially for hydrogen gas, have been successfully overcome with a modified one-dimensional, single-point ramped imaging with T(1) enhancement, measurement. We have measured the diffusion coefficients of both hydrogen gas and sulfur-hexafluoride in a model polymeric membrane of potential interest as a gas separator in metal hydride batteries. The experimental apparatus is a modified one-dimensional diaphragm cell which permits measurement of the diffusion coefficient in experimental times of less than 1 min. The H(2) gas diffusion coefficient in the membrane was 0.54 +/- 0.01 mm(2)/s, while that of sulfur-hexafluoride was 0.14 +/- 0.01 mm(2)/s, at ambient conditions.  相似文献   
993.
994.
Tumor segmentation from magnetic resonance imaging (MRI) is important for volume estimation and visualization of nasopharyngeal carcinoma (NPC). In some cases, segmentation using the general multispectral (GM) method often obtained poor results due to the high false positives caused by complex anatomic structures and serious overlap in feature space. In this study, a texture combined multispectral fuzzy clustering (TCMFC) segmentation algorithm was proposed. A texture measure of T1-weighted (T1) MR image was introduced by calculating the two-order central statistical information of every pixel within a window after the window convolution operation. The texture measure and the intensities in T1 and contrast-enhanced T1 images formed the new 3-D feature vector for fuzzy clustering implemented by semi-supervised fuzzy c-means (SFCM). Testing showed that by reducing the false positives significantly, the TCMFC method achieved improved segmentation results, compared with the GM method.  相似文献   
995.
Real-time MR artifacts filtering during continuous EEG/fMRI acquisition   总被引:1,自引:0,他引:1  
The purpose of this study was the development of a real-time filtering procedure of MRI artifacts in order to monitor the EEG activity during continuous EEG/fMRI acquisition. The development of a combined EEG and fMRI technique has increased in the past few years. Preliminary “spike-triggered” applications have been possible because in this method, EEG knowledge was only necessary to identify a trigger signal to start a delayed fMRI acquisition. In this way, the two methods were used together but in an interleaved manner. In real simultaneous applications, like event-related fMRI study, artifacts induced by MRI events on EEG traces represent a substantial obstacle for a right analysis. Up until now, the methods proposed to solve this problem are mainly based on procedures to remove post-processing artifacts without the possibility to control electrophysiological behavior of the patient during fMRI scan. Moreover, these methods are not characterized by a strong “prior knowledge” of the artifact, which is an imperative condition to avoid any loss of information on the physiological signals recovered after filtering. In this work, we present a new method to perform simultaneous EEG/fMRI study with real-time artifacts filtering characterized by a procedure based on a preliminary analytical study of EPI sequence parameters-related EEG-artifact shapes. Standard EEG equipment was modified in order to work properly during ultra-fast MRI acquisitions. Changes included: high-performance acquisition device; electrodes/cap/wires/cables materials and geometric design; shielding box for EEG signal receiver; optical fiber link; and software. The effects of the RF pulse and time-varying magnetic fields were minimized by using a correct head cap wires-locked environment montage and then removed during EEG/fMRI acquisition with a subtraction algorithm that takes in account the most significant EPI sequence parameters. The on-line method also allows a further post-processing utilization.  相似文献   
996.
A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, phi(i), of 0.1.  相似文献   
997.
Two rapid, pure phase encode, centric scan, Single Point Ramped Imaging with T1-Enhancement (SPRITE) MRI methods are described. Each retains the benefits of the standard SPRITE method, most notably the ability to image short T2* systems, while increasing the sensitivity and generality of the technique. The Spiral-SPRITE method utilizes a modified Archimedean spiral k-space trajectory. The Conical-SPRITE method utilizes a system of spirals mapped to conical surfaces to sample the k-space cube. The sampled k-space points are naturally Cartesian grid points, eliminating the requirement of a re-gridding procedure prior to image reconstruction. The effects of transient state behaviour on image resolution and signal/noise are explored.  相似文献   
998.
From a series of standard SE imaging sequences, performed on a Bruker 0.28 T imaging system, with the assistance of a healthy volunteer, the image signal-to-noise (S/N) ratio obtained from a 23-cm square surface coil has been shown to increase by up to 38% as the tube gauge is increased from 4 to 18 mm. The reason did not lie solely in the much improved Q factor of the unloaded coils. Despite a more than twofold increase in the unloaded Q factor, the loaded coil Q values only increased by 8%. It would appear, however, that the resistive, dielectric and inductive noise components are all reduced, and hence contribute to the observed improved S/N. The reduction in pure ohmic losses accounts for a quarter of the improved S/N, while the reduced inductive and dielectric losses provide the remaining three quarters. No independent quantification of the two latter noise sources was attempted, although a reduced dielectric contribution is confirmed qualitatively by a reduction in the negative frequency shift of the resonance frequency as a function of increasing coil gauge when the coil is loaded.  相似文献   
999.
The high frequencyk-space data in magnetic resonance imaging is often poorly reproduced due to the finite dynamic range of an analog-to-digital converter. The magnitude of this digitization error can equal and even exceed the magnitude of the thermal noise. Under such conditions, attempts to increase image signal-to-noise ratio via signal averaging meet with diminishing success. Because the relative size of the digitization error increases at higher spatial frequencies, a reduction in image resolution is incurred as well. By adjusting the level of the analog signal sampled by the analog-to-digital converter during the course of an imaging experiment, the magnitude of the digitization artifact can be greatly reduced. The results of simulations and imaging experiments are presented which demonstrate that this strategy improves both the signal-to-noise ratio and resolution of magnetic resonance images.  相似文献   
1000.
报道一套基于解释脉冲程序的MRI的计算机模拟软件,可适用于任意脉冲序列成象方法的计算机模拟,该软件包括成象物理模型的建立,成象物理过程的模拟,基于K空间的时域FID信号的重组,多维傅立叶交换重建图象,多维滤波反投影重建图象.图象显示等功能模块;分析了成象的物理过程的基本原理和软件的设计思想.并以GE成象和SEPI快速成象方法为例进行了模拟,实现了图象重建.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号