首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1275篇
  免费   445篇
  国内免费   160篇
化学   978篇
晶体学   52篇
力学   1篇
综合类   5篇
物理学   844篇
  2024年   4篇
  2023年   9篇
  2022年   44篇
  2021年   66篇
  2020年   68篇
  2019年   67篇
  2018年   49篇
  2017年   63篇
  2016年   100篇
  2015年   91篇
  2014年   117篇
  2013年   130篇
  2012年   129篇
  2011年   102篇
  2010年   122篇
  2009年   109篇
  2008年   119篇
  2007年   122篇
  2006年   81篇
  2005年   55篇
  2004年   62篇
  2003年   49篇
  2002年   23篇
  2001年   26篇
  2000年   9篇
  1999年   11篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1973年   1篇
排序方式: 共有1880条查询结果,搜索用时 15 毫秒
1.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
2.
Iridium complexes bearing chelating cyclometalates are popular choices as dopant emitters in the fabrication of organic light-emitting diodes (OLEDs). In this contribution, we report a series of blue-emitting, bis-tridentate IrIII complexes bearing chelates with two fused five-six-membered metallacycles, which are in sharp contrast to the traditional designs of tridentate chelates that form the alternative, fused five-five metallacycles. Five IrIII complexes, Px-21 – 23 , Cz-4 , and Cz-5 , have been synthesized that contain a coordinated dicarbene pincer chelate incorporating a methylene spacer and a dianionic chromophoric chelate possessing either a phenoxy or carbazolyl appendage to tune the coordination arrangement. All these tridentate chelates afford peripheral ligand–metal–ligand bite angles of 166–170°, which are larger than the typical bite angle of 153–155° observed for their five-five-coordinated tridentate counterparts, thereby leading to reduced geometrical distortion in the octahedral frameworks. Photophysical measurements and TD-DFT studies verified the inherent transition characteristics that give rise to high emission efficiency, and photodegradation experiments confirmed the improved stability in comparison with the benchmark fac-[Ir(ppy)3] in degassed toluene at room temperature. Phosphorescent OLED devices were also fabricated, among which the carbazolyl-functionalized emitter Cz-5 exhibited the best performance among all the studied bis-tridentate phosphors, showing a maximum external quantum efficiency (EQEmax) of 18.7 % and CIEx,y coordinates of (0.145, 0.218), with a slightly reduced EQE of 13.7 % at 100 cd m−2 due to efficiency roll-off.  相似文献   
3.
Device grade quantum dots (QDs) require QDs ensembles to retain their original superior optical properties as in solution. QDs with thick shells are proven effective in suppressing the inter-dot interaction and preserving the emission properties for QDs solids. However, lattice strain–induced defects may form as the shell grows thicker, resulting in a notable photoluminescence quenching. Herein, a well-type CdxZn1−xS/CdSe/CdyZn1−yS QDs is proposed, where ternary alloys CdZnS are adopted to match the lattice parameter of intermediate CdSe by separately adjusting the x and y parameters. The resultant thick-shell Cd0.5Zn0.5S/CdSe/Cd0.73Zn0.27S QDs reveal nonblinking properties with a high PL QY of 99% in solution and 87% in film. The optimized quantum dot light-emitting diodes (QLEDs) exhibit a luminance of 31547.5 cd m−2 at the external quantum efficiency maximum of 21.2% under a bias of 4.0 V. The shell thickness shows great impact on the degradation of the devices. The T50 lifetime of the QLEDs with 11.2 nm QDs reaches 251 493 h, which is much higher than that of 6.5 and 8.4 nm QDs counterparts. The performances of the well-type thick-shell QLEDs are comparable to state-of-the-art devices, suggesting that this type of QDs is a promising candidate for efficient optoelectronic devices.  相似文献   
4.
Germanium dioxide (GeO2) aqueous solutions are facilely prepared and the corresponding anode buffer layers (ABLs) with solution process are demonstrated. Atomic force microscopy, X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy measurements show that solution-processed GeO2 behaves superior film morphology and enhanced work function. Using GeO2 as ABL of organic light-emitting diodes (OLEDs), the visible device with tris(8-hydroxy-quinolinato)aluminium as emitter gives maximum luminous efficiency of 6.5 cd/A and power efficiency of 3.5 lm/W, the ultraviolet device with 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter exhibits short-wavelength emission with peak of 376 nm, full-width at half-maximum of 42 nm, maximum radiance of 3.36 mW/cm2 and external quantum efficiency of 1.5%. The performances are almost comparable to the counterparts with poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) as ABL. The current, impedance, phase and capacitance as a function of voltage characteristics elucidate that the GeO2 ABL formed from appropriate concentration of GeO2 aqueous solution favors hole injection enhancement and accordingly promoting device performance.  相似文献   
5.
We have synthesized a blue‐light‐emitting polyfluorene (PF) derivative ( PF‐CBZ‐OXD ) that presents bulky hole‐transporting carbazole and electron‐transporting oxadiazole pendent groups functionalized at the C‐9 positions of alternating fluorene units. The results from photoluminescence and electrochemical measurements indicate that both the side chains and the PF main chain retain their own electronic characteristics in the copolymer. An electroluminescent device incorporating this polymer as the emitting layer was turned on at 4.5 V; it exhibited a stable blue emission with a maximum external quantum efficiency of 1.1%. Moreover, we doped PF‐CBZ‐OXD and its analogue PF‐TPA‐OXD with a red‐light‐emitting iridium phosphor for use as components of phosphorescent red‐light emitters to investigate the effect of the host's HOMO energy level on the degree of charge trapping and on the electrophosphorescent efficiency. We found that spectral overlap and individual energy level matching between the host and guest were both crucial features affecting the performance of the electroluminescence devices. Atomic force microscopy measurements indicated that the dipolar nature of PF‐CBZ‐OXD , in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment that allowed homogeneous dispersion of the polar iridium triplet dopant. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2925–2937, 2007  相似文献   
6.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   
7.
制作了掺杂rubrene和4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9,enyl)-4H-pyran(DCJTB)两种荧光染料的红光有机电致发光器件。N,N’-diphenyl-N,N’-bis(1-naphthyl)-(1,1’-biphenyl)-4,4’-diamine(NPB)和掺杂的Tri-(8-hydroxyquinoline)aluminum(Alq3)分别作为空穴和电子传输层。我们发现掺rubrene和DCJTB的器件性能与只掺DCJTB的器件性能相比有所提高。器件性能的改善是因为掺入的rubrene能够促进从Alq3到DCJTB的能量转移。根据荧光衰减曲线,计算出从Alq3到DCJTB、从Alq3到rubrene以及从rubrene到DCJTB的能量转移速率分别为1.04×109,3.89×109,2.79×109s-1。可以看出能量通过rubrene从Alq3到DCJTB的转移速率是能量直接从Alq3到DCJTB的2.7倍。  相似文献   
8.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   
9.
Two orange phosphorescent iridium complex monomers, 9‐hexyl‐9‐(iridium (III)bis(2‐(4′‐fluorophenyl)‐4‐phenylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐PIr) and 9‐hexyl‐9‐(iridium(III)bis(2‐(4′‐fluorophenyl)‐4‐methylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐MIr), were successfully synthesized. The Suzuki polycondensation of 2,7‐bis(trimethylene boronate)‐9,9‐dioctylfluorene with 2,7‐dibromo‐9,9‐dioctylfluorene and Br‐PIr or Br‐MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5–3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue‐ and orange‐emission peaks. A white‐light‐emitting diode with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br‐PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br‐MIr) was employed as the white‐emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants. © 2007 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 45: 1746–1757, 2007  相似文献   
10.
2,5‐Bis(2‐bromofluorene‐7‐yl)silole was prepared by a modified one‐pot synthesis with a reverse addition procedure, from which novel silole‐containing polyfluorenes with binary random and alternating structures (silole contents between 4.5 and 25% and high Mw up to 509 kDa were successfully synthesized. The well‐defined repeating unit of the alternating copolymer comprises a terfluorene and a silole ring. Optoelectronic properties including UV absorption, electrochemistry, photoluminescence (PL), and electroluminescence (EL) of the copolymers were examined. The different excitation energy transfers from fluorene to silole of the copolymers in solution and in the solid state were compared. The films of the copolymers showed silole‐dominant green emissions with high absolute PL quantum yields up to 83%. EL devices of the copolymers with a configuration of ITO/PEDOT/copolymer/Ba/Al displayed exclusive silole emissions peaked at around 543 nm and the highest EL efficiency was achieved with the alternating copolymer. Using the alternating copolymer and poly(9,9‐dioctylfluorene) as the blend‐type emissive layer, a maximum external quantum efficiency of 1.99% (four times to that of the neat film) was realized, which was a high efficiency so far reported for silole‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 756–767, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号