首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16110篇
  免费   3159篇
  国内免费   2770篇
化学   9704篇
晶体学   179篇
力学   1477篇
综合类   148篇
数学   1386篇
物理学   9145篇
  2024年   53篇
  2023年   234篇
  2022年   362篇
  2021年   546篇
  2020年   718篇
  2019年   551篇
  2018年   543篇
  2017年   604篇
  2016年   729篇
  2015年   649篇
  2014年   911篇
  2013年   1424篇
  2012年   1001篇
  2011年   1073篇
  2010年   926篇
  2009年   1146篇
  2008年   1142篇
  2007年   1174篇
  2006年   1127篇
  2005年   879篇
  2004年   807篇
  2003年   747篇
  2002年   608篇
  2001年   540篇
  2000年   512篇
  1999年   461篇
  1998年   413篇
  1997年   324篇
  1996年   267篇
  1995年   237篇
  1994年   205篇
  1993年   150篇
  1992年   130篇
  1991年   133篇
  1990年   88篇
  1989年   84篇
  1988年   76篇
  1987年   66篇
  1986年   61篇
  1985年   59篇
  1984年   41篇
  1983年   22篇
  1982年   35篇
  1981年   35篇
  1980年   29篇
  1979年   31篇
  1978年   12篇
  1977年   21篇
  1976年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
921.
随着航天技术的发展,飞行器测控通信系统需要测量的参数种类和数量不断增加,但同时要求系统在进行方案搭建时满足更高的可靠性、更小的体积和更小的设备质量。为解决这类问题,提出了基于无线传感器网络的飞行器测量方案,方案重点从节点配置、时间同步、网络拓扑、能源供应等方面对方案进行阐述,最后给出了应解决的关键技术攻关方向。  相似文献   
922.
为了对广东省的能源需求进行准确的预测,首先分析了影响广东省能源需求的各种因素,构建了预测指标体系.在此基础上,针对能源系统非线性等复杂系统特征,结合粒子群算法和BP神经网络的优点,构建了改进的PSO-BP神经网络的预测模型,并通过主成分分析法对指标体系进行数据降维,以降低神经网络的规模和复杂程度.以广东省1985-2013年的能源需求数据进行模拟与仿真,并对2014-2018年的能源需求量进行预测,理论分析和实证研究表明,该方法能够很好的反映广东省能源需求的特征,预测结果较为准确合理.  相似文献   
923.
耿晓月  刘小华 《计算数学》2015,37(2):199-212
本文研究一类二维非线性的广义sine-Gordon(简称SG)方程的有限差分格式.首先构造三层时间的紧致交替方向隐式差分格式,并用能量分析法证明格式具有二阶时间精度和四阶空间精度.然后应用改进的Richardson外推算法将时间精度提高到四阶.最后,数值算例证实改进后的算法在空间和时间上均达到四阶精度.  相似文献   
924.
Gutman and Wagner proposed the concept of matching energy (ME) and pointed out that the chemical applications of ME go back to the 1970s. Let G be a simple graph of order n and be the roots of its matching polynomial. The ME of G is defined to be the sum of the absolute values of . In this article, we characterize the graphs with minimal ME among all unicyclic and bicyclic graphs with a given diameter d. © 2014 Wiley Periodicals, Inc. Complexity 21: 224–238, 2015  相似文献   
925.
A novel, efficient sampling method for biomolecules is proposed. The partial multicanonical molecular dynamics (McMD) was recently developed as a method that improved generalized ensemble (GE) methods to focus sampling only on a part of a system (GEPS); however, it was not tested well. We found that partial McMD did not work well for polylysine decapeptide and gave significantly worse sampling efficiency than a conventional GE. Herein, we elucidate the fundamental reason for this and propose a novel GEPS, adaptive lambda square dynamics (ALSD), which can resolve the problem faced when using partial McMD. We demonstrate that ALSD greatly increases the sampling efficiency over a conventional GE. We believe that ALSD is an effective method and is applicable to the conformational sampling of larger and more complicated biomolecule systems. © 2013 Wiley Periodicals, Inc.  相似文献   
926.
A series of novel solution-processable small-molecule host materials: 2DPF-TCz, 2SBF-TCz, 27DPF-TCz, and 27SBF-TCz comprising a fluorene monomer as the rigid core and tri-carbazole as the periphery have been designed and synthesized, and their optical, electrochemical, and thermal properties have been fully characterized. The host materials exhibit high glass-transition temperatures (231–310 °C) and high triplet energy levels (2.61–2.73 eV). High-quality amorphous thin films can be obtained by spin-coating the host materials from solutions. It is found that the HOMO level of the host materials can be tuned by linking the tri-carbazole unit to the 2,7 positions of the fluorine core, resulting in appropriate HOMO energy levels (−5.36 to −5.23 eV) for improved hole-injection in the device. Solution-processed blue and green electrophosphorescent devices bases on the developed host materials exhibit high efficiencies of 21.2 and 34.8 cd A−1, respectively.  相似文献   
927.
Novel fluorine-containing ultraviolet absorbers (FBPs) with low surface energy were successfully synthesized based on 2,4-dihydroxy benzophenone (BP-1), and their structures were characterized by 1H NMR, 13C NMR, FTIR, and HRMS. UV absorption of FBPs was studied in 10−4 M dichloromethane (CH2Cl2), which demonstrated the superior UV absorption capability of FBPs (ca. ?=1.7×104 to 2.2×104 at λmax) over the matrix (?=1.7×104 at λmax). Quantum chemistry calculation was performed to investigate the stable structure and UV electronic absorption bands of FBPs. The surface chemistry information of high-chlorinated polyethylene (HCPE) coating films embedded with ultraviolet absorbers (UVAs) was given by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The results show that the surface enrichment capability of FBPs is remarkably better than traditional UVAs (including BP-1, BP-3, BP-12) because of the low surface energy properties of FBPs.  相似文献   
928.
The Poisson–Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N‐ and C‐terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules. © 2014 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   
929.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   
930.
This work characterizes eight stationary points of the P2 dimer and six stationary points of the PCCP dimer, including a newly identified minimum on both potential energy surfaces. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with the second‐order Møller–Plesset (MP2) electronic structure method and six different basis sets: aug‐cc‐pVXZ, aug‐cc‐pV(X+d)Z, and aug‐cc‐pCVXZ where X = T, Q. A new L‐shaped structure with C2 symmetry is the only minimum for the P2 dimer at the MP2 level of theory with these basis sets. The previously reported parallel‐slipped structure with C2h symmetry and a newly identified cross configuration with D2 symmetry are the only minima for the PCCP dimer. Single point energies were also computed using the canonical MP2 and CCSD(T) methods as well as the explicitly correlated MP2‐F12 and CCSD(T)‐F12 methods and the aug‐cc‐pVXZ (X = D, T, Q, 5) basis sets. The energetics obtained with the explicitly correlated methods were very similar to the canonical results for the larger basis sets. Extrapolations were performed to estimate the complete basis set (CBS) limit MP2 and CCSD(T) binding energies. MP2 and MP2‐F12 significantly overbind the P2 and PCCP dimers relative to the CCSD(T) and CCSD(T)‐F12 binding energies by as much as 1.5 kcal mol?1 for the former and 5.0 kcal mol?1 for the latter at the CBS limit. The dominant attractive component of the interaction energy for each dimer configuration was dispersion according to several symmetry‐adapted perturbation theory analyses. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号