首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   97篇
  国内免费   99篇
化学   814篇
晶体学   12篇
力学   125篇
综合类   3篇
数学   22篇
物理学   195篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   30篇
  2020年   41篇
  2019年   24篇
  2018年   24篇
  2017年   38篇
  2016年   41篇
  2015年   39篇
  2014年   60篇
  2013年   92篇
  2012年   61篇
  2011年   69篇
  2010年   52篇
  2009年   64篇
  2008年   63篇
  2007年   52篇
  2006年   53篇
  2005年   51篇
  2004年   47篇
  2003年   44篇
  2002年   36篇
  2001年   25篇
  2000年   29篇
  1999年   20篇
  1998年   17篇
  1997年   17篇
  1996年   11篇
  1995年   10篇
  1994年   9篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1171条查询结果,搜索用时 187 毫秒
61.
Polyoxymethylene (POM, polyacetal) is one of the most popular plastics for machine elements, especially in Japan. However, it is difficult to use it under severe operating conditions such as high speed and high contact pressure. Diamond-like carbon (DLC) coatings were well known to be tribological and functional coatings. However, both POM and DLC coatings are difficult to adhere them each other. In the present paper, DLC coatings are deposited by plasma-based ion implantation and deposition (PBIID) method on POM substrate, and validity of DLC coatings on POM was investigated through friction and mechanical tests. When gas pressure was 0.2 and 0.8 Pa, hardness and adhesion properties of DLC coating deposited under gas pressure of 0.5 Pa were lower compared with under 0.2 and 0.8 Pa. For preparing DLC coatings having hard and good adhesion properties, relatively thin substrate was suitable. A correlation between relative humidity in the laboratory and friction coefficient was confirmed while DLC coatings remain on the substrate.  相似文献   
62.
Abstract

Plasma treatment of polymers encompasses a variety of plasma technologies and polymeric materials for a wide range of applications and dates back to at least the 1960s. In this article we provide a brief review of the United States patent literature on plasma surface modification technologies and a brief review of the scientific literature on investigations of the effects of plasma treatment, the nature of the plasma environment, and the mechanisms that drive the plasma–surface interaction. We then discuss low‐radio‐frequency capacitively coupled nitrogen plasmas and their characteristics, suggesting that they provide significant plasma densities and populations of reactive species for effective plasma treatments on a variety of materials, particularly when placing the sample surface in the cathode sheath region. We further discuss surface chemical characterization of treated polymers, including some results on polyesters treated in capacitively coupled nitrogen plasmas driven at 40 kHz. Finally, we connect plasma characterization with surface chemical analysis by applying a surface sites model to nitrogen uptake of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) treated in a 40 kHz nitrogen plasma. This example serves to suggest an interesting practical approach to comparisons of plasma treatments. In addition, it suggests an approach to defining the investigations required to conclusively identify the underlying treatment mechanisms.  相似文献   
63.
Knowing the mechanical properties of UV‐curable resins at cryogenic conditions is important to ongoing fusion‐energy research and to emerging aerospace applications. The tensile and interfacial shear strengths of two commercially available UV‐curable resins were measured at room‐temperature and cryogenic conditions for both bulk and reduced (subnanoliter) specimen volumes. The tensile properties of cured specimens are remarkably sensitive to both testing temperature and specimen size. For one type of resin, the cold (?150 °C) tensile strength of subnanoliter specimens is ~9× larger (179 ± 19 MPa) than bulk values at room temperature. The interfacial shear strength between SiC fibers and small volumes of resin volumes is comparable to the bulk, room‐temperature tensile strength, but it varies over a wide range at ?150 °C (15–53 MPa). All resins were fully cured, and an analysis of fractured surfaces revealed microstructural features. The enhanced strength in microscopic specimens may be related to inhomogeneous stress fields that develop during cure. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 936–945  相似文献   
64.
We have used measurements of the absolute intensity of diffuse X-ray scattering to extract the interfacial tension of a buried polymer/polymer interface. Diffuse scattering was excited by an X-ray standing wave whose phase was adjusted to have a high intensity at the polymer/polymer interface and simultaneously a node at the polymer/air interface. This method permits the capillary-wave-induced roughness of the interface, and hence the interfacial tension, to be measured independently of the polymer/polymer interdiffusion.  相似文献   
65.
Nanophase separation has been suggested to influence the biological performance of polyurethane. In a previous work, six different 4,4'-diphenylmethane diisocyanate (MDI)-based poly(carbonate urethane)s (PCUs) that exhibited various degrees of nanophase separation were synthesized and characterized. In the present work, these PCUs were used as a model system to study the effect of nanometric structures on the biocompatibility of polyurethane. Human blood platelet activation, monocyte activation, protein adsorption, and bacterial adhesion on PCU were investigated in vitro. It was found that human blood platelets as well as monocytes were less activated on the PCU surfaces with a greater degree of nanophase separation in general. This phenomenon was closely associated with the lower ratio of human fibrinogen/albumin competitively adsorbed on these surfaces. Bacterial adhesion was also inhibited in some nanophase-separated PCUs. [diagram in text].  相似文献   
66.
We present a scaling theory for the adsorption of a weakly charged polyelectrolyte chain in a poor solvent onto an oppositely charged surface. Depending on the fraction of charged monomers and on the solvent quality for uncharged monomers, the globule in the bulk of the solution has either a spherical conformation or a necklace structure. At sufficiently high surface charge density, a chain in the globular conformation adsorbs in a flat pancake conformation due to the Coulombic attraction to the oppositely charged surface. Different adsorption regimes are predicted depending on two screening lengths (the Debye screening length monitored by the salt concentration and the Gouy-Chapman length monitored by the surface charge density), on the degree of ionization of the polymer and on the solvent strength. At low bulk ionic strength, an increase in the surface charge density may induce a transition from an adsorbed necklace structure to a uniform pancake due to the enhanced screening of the intra-chain Coulombic repulsion by the counterions localized near the surface. Received 12 April 2001  相似文献   
67.
Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA–SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to␣whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic–organic interfacial adhesion. The newly developed HA–SF composites are expected to be attractive biomedical materials for bone repair and remodeling.  相似文献   
68.
A more noble and biocompatible Ti alloy was achieved at fluence of 140 J cm−2 where the implant indicated a higher degree of hardness (825HV), higher corrosion resistance (−0.21 V) and highest hydrophilicity (i.e. θc = 37°) compared with 70° of the control sample. These values corresponded to 58 and 39 mN m−1 of surface tension respectively. The laser treated samples at 140 J cm−2 showed higher wettability characteristics than mechanically roughened surface. Cell growth and their spreading condition in a specific area were analyzed by SEM and Image J Program software. Clearly, more cells were attached (1.2 × 105) to and spread (488 μm2) over the surface at 140 J cm−2 than in any other condition. Pathologically, the treated samples indicated no sign of infection.  相似文献   
69.
Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni2(OH)2CO3) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni2(OH)2CO3 NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 °C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with ∼93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems.  相似文献   
70.
干细胞迁移机理的近场扫描光学显微术研究   总被引:1,自引:0,他引:1  
将内皮细胞生长因子(VEGF)置于甲基纤维素碟中形成VEGF的浓度梯度分布,并将人脐带间充质干细胞(Mesenchymal stem cells,MSCs)于此浓度梯度中培养,观察VEGF能否诱导MSCs定向迁移。应用近场扫描光学显微术(Near-field scanning optical microscopy,NSOM)同时获取了VEGF诱导前后的MSCs的形貌和光学信息。结果表明,近场光学图观测到形貌图上所没有的黑色斑点,分析认为这些黑斑为细胞的黏着斑。近场光学图显示经过VEGF诱导后细胞的黏着斑数量明显增加。同时,对诱导前后干细胞的骨架蛋白进行免疫荧光标记并用共聚焦显微镜进行观察,结果表明细胞骨架由诱导前的无序状态转变为诱导后的有序状态,说明诱导后的干细胞处于迁移状态。光学超微结构图则显示了诱导后干细胞表面的光学细节比诱导前细胞大量增加,出现了大量直径约200 nm的光斑,这是由于细胞表面大量分泌黏附分子等蛋白分子引起的,这些结果为VEGF能够诱导MSCs进行定向迁移提供了实验依据和可视化证明。也表明NSOM不但能提供高分辨的光学分辨率,还可提供生物细胞精细结构的更深层次的光学信息。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号