首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   68篇
  国内免费   39篇
化学   52篇
晶体学   1篇
力学   631篇
综合类   8篇
数学   143篇
物理学   287篇
  2023年   4篇
  2022年   9篇
  2021年   14篇
  2020年   29篇
  2019年   20篇
  2018年   22篇
  2017年   19篇
  2016年   37篇
  2015年   40篇
  2014年   47篇
  2013年   66篇
  2012年   62篇
  2011年   69篇
  2010年   52篇
  2009年   68篇
  2008年   77篇
  2007年   61篇
  2006年   49篇
  2005年   53篇
  2004年   36篇
  2003年   27篇
  2002年   36篇
  2001年   24篇
  2000年   18篇
  1999年   25篇
  1998年   21篇
  1997年   26篇
  1996年   13篇
  1995年   10篇
  1994年   15篇
  1993年   24篇
  1992年   9篇
  1991年   11篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1970年   1篇
  1957年   1篇
排序方式: 共有1122条查询结果,搜索用时 31 毫秒
31.
Numerical dispersion of two-dimensional finite elements was studied. The outcome of the dispersion study was verified by the numerical and analytical solutions to the longitudinal impact of two long cylindrical bars. In accordance with the results of the dispersion analysis it was demonstrated that the quadratic elements showed better accuracy than the linear ones.  相似文献   
32.
The present paper focuses on the analysis of two- and three-dimensional flow past a circular cylinder in different laminar flow regimes. In this simulation, an implicit pressure-based finite volume method is used for time-accurate computation of incompressible flow using second order accurate convective flux discretisation schemes. The computation results are validated against measurement data for mean surface pressure, skin friction coefficients, the size and strength of the recirculating wake for the steady flow regime and also for the Strouhal frequency of vortex shedding and the mean and RMS amplitude of the fluctuating aerodynamic coefficients for the unsteady periodic flow regime. The complex three dimensional flow structure of the cylinder wake is also reasonably captured by the present prediction procedure.  相似文献   
33.
Both ferrofluidics and genetic algorithms are relatively new fields. Due to complex physical interactions, ferrofluidic topographies and assemblies have only been solved using finite time step, Lattice Boltzmann, and finite-element methods in very simple magnetic field configurations. In this paper, we show that it is possible (and highly advantageous) to employ genetic algorithms to solve for the fluid topographies, which can be extended to include more complex magnetic fields.  相似文献   
34.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
35.
椭圆柱电缆单位长度的自感计算   总被引:1,自引:0,他引:1  
利用复数坐标系z上的儒可夫斯基变换,计算长直椭圆柱电缆单位长度的自感,并对结果进行讨论.  相似文献   
36.
The unsteady forces on a square cylinder in sinusoidally oscillating flows with non‐zero‐mean velocities are investigated numerically by using a weakly compressible‐flow method with three‐dimensional large eddy simulations. The major parameters in the analysis are Keulegan–Carpenter number (KC) and the ratio between the amplitude and the mean velocities of the approaching flow (AR). By varying the values of KC and AR the resulting drag and lift of the cylinders are analyzed systematically at two selected approaching‐flow attack angles (0 and 22.5°). In the case of the non‐zero attack angle, results show that both the drag and lift histories can be adequately described by Morison equations. However, Morison equations fail to correctly describing the lift history as the attack angle is zero. In addition, when the ratio of AR/KC is near the Strouhal number of the bluff‐body flow, the resulting drag is promoted due to the occurrence of resonance. Based on the results of systematic analyses, finally, the mean and inertia force coefficients at the two selected attack angles are presented as functions of KC and AR based on the Morison relationships. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
37.
38.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
39.
本文将一种VLES(Very Large Eddy Simulation)模型引入到动网格数值计算中,并验证了VLES模型用于模拟类似振动圆柱绕流的动边界问题的有效性。数值求解了不同振幅和频率下非稳态振动圆柱绕流问题。研究表明:随着振幅和激励频率的增加,绕圆柱流动涡脱离形式从2S模式转换到2P0模式,再到P+S模式。在高振幅和激励频率比fe/fs=0.95时,涡脱离形式却表现为2P0模式到P+S模式的过渡状态,振动圆柱在上升或下降过程中涡的脱离造成在每个周期升力曲线的左右侧发生不规则的"跳动"现象,尽管脱落涡可能为涡对或者单涡.  相似文献   
40.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号