首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14725篇
  免费   3530篇
  国内免费   1420篇
化学   9914篇
晶体学   261篇
力学   220篇
综合类   85篇
数学   185篇
物理学   9010篇
  2024年   23篇
  2023年   149篇
  2022年   341篇
  2021年   483篇
  2020年   674篇
  2019年   492篇
  2018年   433篇
  2017年   491篇
  2016年   651篇
  2015年   660篇
  2014年   809篇
  2013年   1402篇
  2012年   944篇
  2011年   1040篇
  2010年   807篇
  2009年   902篇
  2008年   891篇
  2007年   1039篇
  2006年   1045篇
  2005年   796篇
  2004年   719篇
  2003年   670篇
  2002年   555篇
  2001年   510篇
  2000年   477篇
  1999年   357篇
  1998年   351篇
  1997年   338篇
  1996年   263篇
  1995年   227篇
  1994年   201篇
  1993年   180篇
  1992年   140篇
  1991年   98篇
  1990年   100篇
  1989年   72篇
  1988年   67篇
  1987年   45篇
  1986年   49篇
  1985年   35篇
  1984年   38篇
  1983年   8篇
  1982年   17篇
  1981年   25篇
  1980年   18篇
  1979年   6篇
  1978年   11篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
991.
Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c‐type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105 e s?1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+/Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.  相似文献   
992.
By using in situ aberration‐corrected environmental transmission electron microscopy, for the first time at atomic level, the dynamic evolution of the Cu surface is captured during CO oxidation. Under reaction conditions, the Cu surface is activated, typically involving 2–3 atomic layers with the formation of a reversible metastable phase that only exists during catalytic reactions. The distinctive role of CO and O2 in the surface activation is revealed, which features CO exposure to lead to surface roughening and consequently formation of low‐coordinated Cu atoms, while O2 exposure induces a quasi‐crystalline CuOx phase. Supported by DFT calculations, it is shown that crystalline CuOx reversibly transforms into the amorphous phase, acting as an active species to facilitate the interaction of gas reactants and catalyzing CO oxidation.  相似文献   
993.
Sulfur is not normally considered a light‐emitting material, even though there have been reports of a dim luminescence of this compound in the blue‐to‐green spectral region. Now, it is shown how to make red‐emissive sulfur by a two‐step oxidation approach using elemental sulfur and Na2S as starting materials, with a high photoluminescence quantum yield of 7.2 %. Polysulfide is formed first and is partially transformed into Na2S2O3 in the first step, and then turns back to elemental S in the second step. The elevated temperature and relatively oxygen‐deficient environment during the second step transforms Na2S2O3 into Na2SO3 incorporated with oxygen vacancies, thus resulting in the formation of a solid‐state powder consisting of elemental S embedded in Na2SO3. It shows aggregation‐induced emission properties, attributed to the influence of oxygen vacancies on the emission dynamics of sulfur by providing additional lower energy states that facilitate the radiative relaxation of excitons.  相似文献   
994.
Miniaturized autonomous chemo‐electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light‐emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble‐induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self‐propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (?pH and ?I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self‐orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine‐tuning of the dynamic behavior of these swimmers.  相似文献   
995.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   
996.
Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cation N‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42?, MnBr42?, and SnBr42?. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.  相似文献   
997.
A sample pretreatment method based on the combination of a three‐phase solvent extraction system and deep eutectic solvent‐based dispersive liquid–liquid microextraction has been introduced for the extraction of four organochlorine pesticides in cocoa samples before their determination by gas chromatography‐electron capture detection. A mixture of sodium chloride, acetonitrile, and potassium hydroxide solution is added to cocoa bean or powder. After vortexing and centrifugation of the mixture, the collected upper phase (acetonitrile) is removed and mixed with a few microliters of N,N‐diethanol ammonium chloride: pivalic acid deep eutectic solvent. Then it is rapidly injected into deionized water and a cloudy solution is obtained. Under optimum conditions, the limits of detection and quantification were found to be 0.011‐0.031 and 0.036‐0.104 ng/g, respectively. The obtained extraction recoveries varied between 74 and 92%. Also, intra‐ (n = 6) and interday (n = 4) precisions were less than or equal to 7.1% for the studied pesticides at a concentration of 0.3 ng/g of each analyte. The suggested method was applied to determine the studied organochlorine pesticide residues in various cocoa powders and beans gathered from groceries in Tabriz city (Iran) and aldrin and dichlobenil were found in some of them.  相似文献   
998.
Herein, we report the development of an 18F‐labeled, activity‐based small‐molecule probe targeting the cancer‐associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18F radionuclide incorporation required for PET imaging. The resulting molecule, [18F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000‐fold selectivity relative to other serine hydrolases. [18F]JW199 displays rapid, NCEH1‐dependent accumulation in mouse tissues. Finally, we demonstrate that [18F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple‐negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.  相似文献   
999.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   
1000.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue‐emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three‐dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band‐edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self‐trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non‐perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号