首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75849篇
  免费   10459篇
  国内免费   7403篇
化学   44978篇
晶体学   543篇
力学   3670篇
综合类   952篇
数学   9461篇
物理学   34107篇
  2024年   153篇
  2023年   757篇
  2022年   1324篇
  2021年   2814篇
  2020年   2336篇
  2019年   2119篇
  2018年   1804篇
  2017年   1997篇
  2016年   2604篇
  2015年   2593篇
  2014年   3441篇
  2013年   5456篇
  2012年   3924篇
  2011年   4577篇
  2010年   3926篇
  2009年   4649篇
  2008年   4882篇
  2007年   5073篇
  2006年   4476篇
  2005年   3410篇
  2004年   3122篇
  2003年   2866篇
  2002年   5062篇
  2001年   2458篇
  2000年   2029篇
  1999年   1660篇
  1998年   1607篇
  1997年   1173篇
  1996年   1131篇
  1995年   1010篇
  1994年   913篇
  1993年   859篇
  1992年   764篇
  1991年   569篇
  1990年   480篇
  1989年   405篇
  1988年   399篇
  1987年   325篇
  1986年   329篇
  1985年   426篇
  1984年   326篇
  1983年   182篇
  1982年   360篇
  1981年   528篇
  1980年   475篇
  1979年   504篇
  1978年   394篇
  1977年   310篇
  1976年   267篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
11.
In order to understand the dynamics of vortices on heat transfer, the unsteady flow field of tangential direction jets flowing in the annular chamber is numerically investigated by scale-adaptive simulation (SAS). The jet Reynolds number is 332,000 based on the jet’s diameter and inflow velocity for a specific geometric model. The analogy theory is used to obtain the convective heat transfer coefficient distribution on the hub surface. Spectral analysis via fast Fourier transform (FFT) is used to analyze frequency information that flows inside the chamber. The proper orthogonal decomposition (POD) method is performed on the velocity field in the chamber and the convective heat transfer coefficient on the hub surface using a snapshot method. The fast Fourier transform helps find the dominant frequency of the unsteady flow in the chamber. The time sequence of velocity fields on the radial plane shows the presence of cyclic flapping of the jet. The proper orthogonal decomposition analysis indicates that the unsteady periodic flow phenomenon in the chamber and unsteady heat transfer on the hub surface are mainly related to the dynamics of the counter-rotating vortices caused by the jet.  相似文献   
12.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
13.
Indium phosphide (InP) quantum dots (QDs) are ideal substitutes for widely used cadmium-based QDs and have great application prospects in biological fields due to their environmentally benign properties and human safety. However, the synthesis of InP core/shell QDs with biocompatibility, high quantum yield (QY), uniform particle size, and high stability is still a challenging subject. Herein, high quality (QY up to 72%) thick shell InP/GaP/ZnS core/shell QDs (12.8 ± 1.4 nm) are synthesized using multiple injections of shell precursor and extension of shell growth time, with GaP serving as the intermediate layer and 1-octanethiol acting as the new S source. The thick shell InP/GaP/ZnS core/shell QDs still keep high QY and photostability after transfer into water. InP/GaP/ZnS core/shell QDs as fluorescence labels to establish QD-based fluorescence-linked immunosorbent assay (QD-FLISA) for quantitative detection of C-reactive protein (CRP), and a calibration curve is established between fluorescence intensity and CRP concentrations (range: 1–800 ng mL−1, correlation coefficient: R2 = 0.9992). The limit of detection is 2.9 ng mL−1, which increases twofold compared to previously reported cadmium-free QD-based immunoassays. Thus, InP/GaP/ZnS core/shell QDs as a great promise fluorescence labeling material, provide a new route for cadmium-free sensitive and specific immunoassays in biomedical fields.  相似文献   
14.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   
15.
Large cable net structures have been widely applied in aerospace engineering due to the feature of light-weight, high packaging efficiency, and high thermal stability. Structural vibrations induced by a variety of disturbances are inevitable in the space environment, resulting in the requirement of effective vibration control strategies for large cable net structures. Since the large cable net structures have many closely spaced vibrational modes in the range of low frequencies, traditional modal based control may cause modal truncation and spillover problems. In this paper, a wave-based boundary control strategy is adopted and its effectiveness to control the vibration of cable net structures is investigated, by transfer function analysis and numerical methods. It is found that the structural vibration can be absolutely resisted by applying the wave-based boundary controllers onto all the exterior nodes, when disturbances come from the external boundaries of the cable net. Our results in this paper can provide a theoretical basis for the vibration control of large cable net structures.  相似文献   
16.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
17.
We report optical and nonlinear optical properties of CuS quantum dots and nanoparticles prepared through a nontoxic, green, one-pot synthesis method. The presence of surface states and defects in the quantum dots are evident from the luminescent behavior and enhanced nonlinear optical properties measured using the open aperture Z-scan, employing 5 ns laser pulses at 532 nm. The quantum dots exhibit large effective third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 2.3 J cm−2, and the optical nonlinearity arises largely from absorption saturation and excited state absorption. Results suggest that these materials are potential candidates for designing efficient optical limiters with applications in laser safety devices.  相似文献   
18.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   
19.
The Electrostatic Discharge (ESD) phenomenon has been described through the IEC 61000-4-2. ESD current parameters' values, have been set in this Standard. The theoretical ESD current waveform defined in this standard, describing the conventional Contact discharge mode, needs to be re-evaluated on the basis of accurate experimental data. Even though the standard deals with commercial ESD generators, its goal is to simulate the natural phenomenon as good as possible. More and accurate data may contribute to the better simulation of the natural phenomenon. New values and better comprehension of the phenomenon demand new measurements based on high end measuring equipment. Such works and publications have been carried out the past years. Yet, the need to systematize and integrate this work remains. Larger and trust-worthy series of measurements need to be carried out and presented clearly.This paper deals with new ESD-current data, taken with broadband equipment. New and more detailed measurements like these, were never before taken at such a large number of individuals. The goal of this work is that the data acquired can serve as a basis for re-evaluating the conventional approach of the scientific community to the ESD event.In this paper, using a broadband measuring system, new parameters' values are measured and relations are presented, following standard statistical procedures. The results, which occur from measurements carried out on tenths of human individuals, are questioning the Standard in many points. A new way of approaching the standardization of the ESD current is proposed, as the excuse of the poor measuring equipment that sets barriers on the measuring accuracy, does not apply any more. The charging voltages of 500 V and 1000 V were also examined since such range of voltages are often met at ESD events and they are considered very harmful.  相似文献   
20.
As a new type of quantum dots (QDs), hexagonal boron nitride quantum dots (BNQDs) exhibit promising potential in the applications of disease diagnosis, fluorescence imaging, biosensing, metal ion detection, and so on, because of their remarkable chemical stability, excellent biocompatibility, low cytotoxicity, and outstanding photoluminescence properties. However, the large-scale fabrication of homogeneous BNQDs still remains challenging. In this article, the properties and common fabrication methods of BNQDs are summarized based on the recent research progress. Then, the corresponding yields, morphologies, and fabrication mechanisms of these as-obtained BNQDs are discussed in detail. Moreover, the applications of these as-obtained BNQDs in different fields are also discussed. This article is expected to inspire new methods and improvements to achieve large-scale fabrication of homogeneous BNQDs, which will enable their practical applications in future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号