首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   47篇
  国内免费   16篇
化学   62篇
晶体学   12篇
综合类   1篇
物理学   377篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   72篇
  2008年   64篇
  2007年   51篇
  2006年   30篇
  2005年   8篇
  2004年   8篇
  2003年   22篇
  2002年   26篇
  2001年   18篇
  2000年   17篇
  1999年   19篇
  1998年   19篇
  1997年   7篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有452条查询结果,搜索用时 46 毫秒
11.
Interactions between divalent alkali earth metal (DAEM) ions M (M?Be, Mg, Ca, Sr, Ba) and the second stable glycine conformer in the gas phase, which can transfer into the ground‐state glycine‐M2+ (except the glycine–Be2+) among each corresponding isomers when these divalent metal ions are bound, are studied at the hybrid three‐parameter B3LYP level with three different basis sets. Proton transfers from the hydroxyl to the amino nitrogen of the glycine without energy barriers have been first observed in the gas phase in these glycine–M2+ systems. The interaction between the glycine and these DAEM ions except beryllium and magnesium ion only create an amino hydrogen pointing to the original hydroxyl due to their weaker interaction relative to those divalent transition metal (DTM) ion‐bound glycine derivatives, being obviously different from that between the glycine and DTM ions, in which two amino hydrogens point to the original hydroxyl oxygen when these metal‐chelated glycine derivatives are produced. The interaction energy between the glycine and divalent magnesium would be the boundary of one or two amino hydrogens pointing to the hydrogyl oxygen, i.e., the ?170.3 kcal/mol of binding energy is a critical point. Similar intramolecular proton transfer has also been predicted for those DTM ion‐chelated glycine systems; however, that in the gas state has not been observed in the monovalent metal ion‐coordinated glycine systems. The binding energy between some monovalent TM ion and the glycine is similar to that of the glycine–Ba2+, which has the lowest binding strength among these DAEM–ion chelated glycine complexes. The difference among them only lies in the larger electrostatic and polarized effects in the latter, which favor the stability of the zwitterionic glycine form in the gas phase. According to these observations, we predict that the zwitterionic glycine would exist in the field of two positive charges in the gas phase. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 205–214, 2003  相似文献   
12.
ICP—AES法测定绿柱石中铍硅铝铁镁钙钛和锰   总被引:1,自引:0,他引:1  
  相似文献   
13.
Reaction of powdered Zr with ZrCl4, BaCl2 and Be in suitable proportions in a Ta container at 800°C produces the title compound. Suitable monocrystals for X-ray diffraction were obtained from reactions to which a comparable amount of Hg2Cl2 had been added. The structure of Ba3Zr6Cl18Be is a superstructure of the K2ZrCl6 · Zr6Cl18H type (R3 c, Z = 6; a = 9.6852 (9) Å, c = 52.52 (1) Å; R, Rw = 2.7, 3.2% for 826 independent reflections, 2θ ≤ 50°). Trigonally compressed [Zr6(Be)Cl12i]Cl6a clusters are interconnected by six-coordinate barium atoms that lie in Cla antiprisms (a twisted version of the ZrIV site) while (9 + 3)-coordinate barium substitutes for potassium within chlorine layers. Distortions associated with the size and field of barium are responsible for the superstructure and for differences from other analogues.  相似文献   
14.
With the introduction of the concept of the iso‐spectrum‐level series, a linear relationship is found between the first differences of the ionization potential of excited states and nuclear charge Z along an iso‐spectrum‐level series, and the ionization potential of excited states of Be‐like sequence are studied systematically on the basis of the weakest bound electron potential model theory. The expression of nonrelativistic ionization potential is derived from the weakest bound electron potential model theory, and relativistic effects are included by using a fourth‐order polynomial in Z. As a demonstration, the ionization potentials of [He]2s2p 3P, [He]2s3s 1S0, [He]2s3p 1P, [He]2s3d 1D2, and [He]2s4d 1D2 series for a range of Be‐like sequence from Z = 4–23 are calculated. The results are compared with the experimental data and the recent sophisticated ab initio results. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 344–350, 2003  相似文献   
15.
The development in theoretical condensed-matter science based on density-functional theory (DFT) has reached a level where it is possible, from “parameter-free” quantum mechanical calculations to obtain total energies, forces, vibrational frequencies, magnetic moments, mechanical and optical properties and so forth. The calculation of such properties are important in the analyses of experimental data and they can be predicted with a precision that is sufficient for comparison with experiments. It is almost impossible to do justice to all developments achieved by DFT because of its rapid growth. Hence, it has here been focused on a few advances, primarily from our laboratory. Unusual bonding behaviors in complex materials are conveniently explored using the combination of charge density, charge transfer, and electron-localization function along with crystal-orbital Hamilton-population analyses. It is indicated that the elastic properties of materials can reliably be predicted from DFT calculations if one takes into account the structural relaxations along with gradient corrections in the calculations. Experimental techniques have their limitations in studies of the structural stability and pressure-induced structural transitions in hydride materials whereas the present theoretical approach can be applied to reliably predict properties under extreme pressures. From the spin-polarized, relativistic full-potential calculations one can study novel materials such as ruthenates, quasi-one-dimensional oxides, and spin-, charge-, and orbital-ordering in magnetic perovskite-like oxides. The importance of orbital-polarization correction to the DFT to predict the magnetic anisotropy in transition-metal compounds and magnetic moments in lanthanides and actinides are emphasized. Apart from the full-potential treatment, proper magnetic ordering as well as structural distortions have to be taken into account to predict correctly the insulating behavior of transition-metal oxides. The computational variants LDA and GGA fail to predict insulating behavior of Mott insulators whereas electronic structures can be described correctly when correlation effects are taken into account through LDA+U or similar approaches to explain their electronic structures correctly. Excited-state properties such as linear optical properties, magneto-optical properties, XANES, XPS, UPS, BIS, and Raman spectra can be obtained from accurate DFT calculations.  相似文献   
16.
The iterative difference-dedicated CI method (IDDCI) has been applied to determine excitation energies in small systems for which benchmark FCI and other high-level calculations exist. Transitions to excited singlet and triplet states in Be and vertical transitions in CH+, BH and CH2 are reported. The deviations from FCI results are lower than 0.1 eV and compare advantageously with SDCI including size-consistency corrections, (SC)2SDCI, and with coupled cluster calculations including the effect of triples, especially for the states which have a predominant double excitation character. The IDDCI procedure has been speeded up by using smaller subspaces for optimizing the molecular orbitals. Received: 17 January 1997 / Accepted: 31 July 1997  相似文献   
17.
Complexes of beryllium chloride and nitrate with (Me2N)2P(O)F were characterized in solution by multinuclear NMR spectroscopy and in some cases by IR spectroscopy and conductimetry. 31P and 19F NMR spectra were informative of changes associated with complex formation revealing resonances consistent with different species in solution and suggest an equilibrium between these species in both beryllium derivatives. These compounds show narrow lines in the solution 9Be NMR spectra, indicative of a highly symmetric environment for beryllium. The presence of the different species was more pronounced in beryllium chloride complexes. The results are compared to those reported in the literature for hexamethylphosphoramide (HMPA).  相似文献   
18.
We have developed an apparatus for nanostructure fabrication based on direct deposition of laser-manipulated cesium vapors onto pyrolitic graphite. Key features of our apparatus are production and manipulation of a longitudinally cooled atom beam, which allows for straightforward operation in the moderate to low flux density conditions. Both unstructured and structured low surface coverage depositions have been carried out and samples carefully analyzed at the atom scale by in situ tunneling microscopy. Results represent a step forward to the realization of a novel technology for space-controlled deposition of few, eventually single, atoms.  相似文献   
19.
We propose a novel scenario for the electronic state in the manganese perovskites. We argue that, at low temperatures and within the ferromagnetic state, the physics of these colossal magnetoresistance compounds may be characterized by a correlated metallic state near a metal insulator transition where the orbital degrees of freedom play the main role. This follows from the observation that a two-band degenerate Hubbard model under a strong magnetic field can be mapped onto a para-orbital single band model. We solve the model numerically using the quantum Monte-Carlo technique within a dynamical mean field theory which is exact in the limit of large lattice connectivity. We argue that the proposed scenario may allow for the qualitative interpretation of a variety of experiments which were also observed in other (early) transition metal oxides. Received: 3 October 1997 / Revised: 9 December 1997 / Accepted: 12 January 1998  相似文献   
20.
Magnetic fields produced by biological organisms contain valuable information on the underlying physiological processes and their pathologies. Currently, superconducting detectors cooled far below room temperature are required to measure these generally weak biomagnetic signals. We have developed a sensitive laser magnetometer based on optical pumping of cesium atoms that makes it possible to map the magnetic field produced by the beating human heart. A gradiometer formed by two identical sensors greatly reduces the influence of external stray magnetic fields. The magnetometer operates at room temperature and therefore opens the way to affordable and convenient monitoring of biomagnetic fields in research and medical diagnostics. Received: 8 January 2003 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +41-26/300-9631, E-mail: robert.wynands@unifr.ch  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号