首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8682篇
  免费   3718篇
  国内免费   7234篇
化学   11317篇
晶体学   1132篇
力学   673篇
综合类   222篇
数学   131篇
物理学   6159篇
  2024年   101篇
  2023年   387篇
  2022年   423篇
  2021年   574篇
  2020年   430篇
  2019年   587篇
  2018年   399篇
  2017年   579篇
  2016年   587篇
  2015年   674篇
  2014年   1303篇
  2013年   1180篇
  2012年   1012篇
  2011年   1078篇
  2010年   1071篇
  2009年   1084篇
  2008年   1106篇
  2007年   902篇
  2006年   1069篇
  2005年   968篇
  2004年   813篇
  2003年   794篇
  2002年   564篇
  2001年   475篇
  2000年   300篇
  1999年   288篇
  1998年   181篇
  1997年   178篇
  1996年   102篇
  1995年   108篇
  1994年   63篇
  1993年   44篇
  1992年   56篇
  1991年   46篇
  1990年   39篇
  1989年   35篇
  1988年   8篇
  1987年   9篇
  1986年   3篇
  1985年   12篇
  1982年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
91.
微纳米加工技术及其应用综述   总被引:2,自引:0,他引:2  
崔铮 《物理》2006,35(1):34-39
材料与结构在微纳米尺度展现了许多不同于宏观尺度的新特征,纳米技术已经成为当前科学研究与工业开发的热门领域之一。微小型化依赖于微纳米尺度的功能结构与器件,实现功能结构微纳米化的基础是先进的微纳米加上技术,文章对微纳米加上技术做了一个综合的介绍,简要说明了微纳米加工技术与传统加工技术的区别,在微纳米加工技术的应用方面提出了一些合理选择加工技术的原则,并对当前微纳米加工技术面临的挑战和今后发展的趋势作了预测。  相似文献   
92.
将(4,4',4',4')四羧基酞菁钴(CoTcPc)和HRP标记核基质蛋白22抗体(HRP-Ab-NMP22)一起固定在Au电极表面,构建了一种快速测定膀胱肿瘤患者尿液中NMP22抗原含量的安培免疫传感器(HRP-Ab-NMP22/Fe3O4/CoPc CME).实验表明:该传感器对NMP22抗原具有良好的电化学响应,HRP对H2O2电催化氧化电流I0降低,△I0与NMP22浓度在1.0~150ng·mL-1成线性关系,检测限则为0.5ng·mL-1.该传感器基于一次性竞争性免疫反应,较Elisa法提高了检测速度,有望用于膀胱肿瘤的迅速诊断.  相似文献   
93.
纳米累托石-TiO2光催化剂的制备及表征   总被引:1,自引:1,他引:0  
以TiCl4和累托石为主要原料,制备出纳米累托石-TiO2粉末,并用X-衍射、透射电镜等对其进行表征.结果表明:纳米累托石-TiO2粉末平均直径为17.5nm当焙烧温度从500℃升至800℃时,累托石-TiO2粉末的比表面积从65.7m^2/g下降至3.3m^2/g,单位质量吸附剂的孔体积从0.1430cm。/u降到0.0213cm^3/g;当焙烧温度从300℃上升至500℃时,孔径变化不大,属中孔范围;当焙烧温度升至800℃时,一些孔道出现坍塌,不利于纳米累托石-TiO2粉末的光催化活性.  相似文献   
94.
为了进一步研究纳米导线阵列的排列形状以及阵列数目对其场发射行为的影响,利用镜像悬浮球模型对正方形以及六边形排列的纳米导线阵列的场发射行为进行计算与模拟,近似的得到纳米导线阵列的场发射增强因子满足如下的变化趋势:β=h/ρ(1/1+W)+1/2(1/1+W)2+3,其中h为纳米导线的高度,ρ为纳米导线的半径,W是以R为自变量的函数,R为纳米导线阵列的间距.结果显示纳米导线阵列的排列形状对其场发射性能的影响较小,而阵列间距则是影响场发射性能的关键因素:当R<R0时,场发射增强因子随着阵列间距的减小而急剧减小;当R>R0时,场发射增强因子基本不变,其中R0为导线阵列场发射的最佳间距.进一步研究表明改变纳米导线阵列的数目基本不会改变阵列的场发射性能随间距的变化趋势,但是随着阵列数目的增加,R0会有一定程度的减小,场发射增强因子也会降低. 关键词: 纳米导线 场发射 增强因子 阵列数目  相似文献   
95.
SHS等离子喷涂制备FeAl2O4-Al2O3-Fe纳米复合涂层的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用SHS等离子喷涂技术,将经过机械团聚法制备的Fe2O3-Al复合粉体送入等离子焰流,沉积出厚度约为400 μm的复合涂层.利用XRD,SEM 和TEM等检测手段对涂层的成分和组织进行了分析,测定了涂层的显微硬度、断裂韧性以及耐磨性.结果表明涂层为具有纳米结构的FeAl2O4-Al2O3-Fe纳米复合组织;涂层的显微硬度为HV100g870;断裂韧性是普通Al2O3涂层的2倍;无润滑磨损的耐磨性是普通Al2O3涂层的2.5倍.  相似文献   
96.
p型未掺杂富锌ZnO薄膜的形成和性能研究   总被引:1,自引:1,他引:0  
以高纯ZnO为靶材,氩气为溅射气体,利用射频磁控溅射技术在石英衬底上生长出纤锌矿结构的富锌ZnO薄膜.薄膜沿(002)择优取向生长,厚约为1.2μm,呈现电绝缘特性.将溅射的ZnO薄膜在10-3Pa,510~1 000 K的温度范围等温退火1 h,室温Hall测量结果表明ZnO薄膜的导电性能经历了由绝缘—n型—p型—n型半导体的变化.XPS测试表明ZnO薄膜的Zn/O离子比随退火温度的升高而降低,但一直是富锌ZnO,说明未掺杂的富锌ZnO也可以形成p型导电.p型未掺杂富锌ZnO薄膜的形成可归因于VZn受主浓度可以克服VO和Zni本征施主的补偿效应.  相似文献   
97.
利用原子力显微镜分析了ZnO薄膜在具有本征氧化层的Si(100)和Si(111)基片上的表面形貌 随沉积时间的演化. 通过对薄膜生长形貌的动力学标度表征,研究了射频反应磁控溅射条件 下,ZnO薄膜的成核过程及生长动力学行为. 研究发现,ZnO在基片表面的成核过程可分为初 期成核阶段、低速率成核阶段和二次成核阶段. 对于Si(100)基片,三个成核阶段的生长指 数分别为β1=1.04,β2=0.25±0.01,β3=0.74;对 于Si(11 关键词: ZnO薄膜 磁控溅射 生长动力学 成核机制  相似文献   
98.
文章合成了N,N'-二正丁基苝四羧酸二酰亚胺,并纯化、调晶,进行了IR、元素分析、X射线等测定.分析该化合物在DMF中的紫外光谱(最大吸收波长524.80 nm)、荧光光谱(最大发射波长539.0 nm)、Stokes位移(数值15 nm)等光谱性质.在400~700 nm范围内,α晶型薄膜紫外-可见吸收出现很强的吸收峰,且由β型变为α型,最大吸收波长有明显的红移(545 nm变为580 nm).X射线粉末衍射也反映出α晶型的2θ在26.0°处衍射峰CPS为2 508,β型在25.2°为1 891.α,β晶型作为电荷产生材料制得的功能分离型有机光导体,在光源滤波波长λ=532 nm曝光下,测得含α,β感光体达到饱和电位的时间分别为46,93.98 s,光衰电位(5.3千伏电压负充电电晕,1~2 s后的表面电位)分别为727和525 V,半衰曝光量分别为4.32,4.34μJ·cm-2,残余电位分别为30和45 V等光导性能数值.  相似文献   
99.
孪晶型阻尼材料已被实际应用,(011)孪晶通过fcc-fct马氏体相变形成,而γMn基合金中,马氏体相变又与合金的反铁磁转变密切相关.因此研究γMn基孪晶型阻尼材料,无疑必须探讨反铁磁转变与一级马氏体相变的之间关系,反铁磁转变和马氏体转变对孪晶形成的作用.本文通对富锰的γMn基合金(Mn-Cu,Mn-Fe,Mn-Ni)的内耗和模量的测量,研究这二类相变在不同材料,不同成分合金中的耦合的机制,以及反铁磁转变和马氏体相变对孪晶形成的作用.结果显示,马氏体相变和反铁磁转变耦合或马氏体相变与孪晶阻尼峰耦合都可以获得材料的高阻尼性能.当锰含量较高时,反铁磁转变和马氏体相变发生耦合,或马氏体相变内耗与孪晶内耗叠加,在室温附近形成高内耗阻尼;当锰含量较低时,马氏体相变温度降到室温以下,反铁磁转变形成的微孪晶亦能产生内耗阻尼峰.  相似文献   
100.
采用熔体快淬的方法制备Pr2Fe14B/α-Fe纳米晶复合永磁材料.使用振动样品磁强计(VSM)测量样品的室温磁性能.实验合金成分为(PrxFe94.3-xB5.7)0.99Zr1(其中x=8.2,8.6,9.0,9.4,9.8,10.2,10.6,11.0,11.4(原子分数,%)).系统地研究了辊速及合金成分对快淬带磁性能的影响,当Pr原子分数由8. 关键词: 纳米复合永磁材料 熔体快淬 2Fe14B/α-Fe')" href="#">Pr2Fe14B/α-Fe 磁性  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号