首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   353篇
  国内免费   213篇
化学   94篇
晶体学   6篇
力学   323篇
综合类   56篇
数学   500篇
物理学   975篇
  2024年   14篇
  2023年   58篇
  2022年   40篇
  2021年   46篇
  2020年   35篇
  2019年   61篇
  2018年   33篇
  2017年   64篇
  2016年   63篇
  2015年   69篇
  2014年   103篇
  2013年   84篇
  2012年   95篇
  2011年   95篇
  2010年   84篇
  2009年   81篇
  2008年   122篇
  2007年   75篇
  2006年   95篇
  2005年   100篇
  2004年   80篇
  2003年   71篇
  2002年   61篇
  2001年   40篇
  2000年   44篇
  1999年   51篇
  1998年   29篇
  1997年   22篇
  1996年   24篇
  1995年   21篇
  1994年   24篇
  1993年   13篇
  1992年   15篇
  1991年   16篇
  1990年   12篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1959年   2篇
排序方式: 共有1954条查询结果,搜索用时 93 毫秒
991.
针对待修正参数维数较高时,标准马尔可夫链蒙特卡罗MCMC (Markov Chain Monte Carlo)算法不易收敛、拒绝率高的问题,提出了基于Kriging模型和在MCMC中融合花朵授粉算法的修正方法.首先,以待修正参数作为输入,以应变模态作为输出,建立Kriging模型,通过蝙蝠算法确定Kriging模型的相关系数;然后,采用最大熵的贝叶斯方法估计参数的后验概率密度函数,将花朵授粉算法融入MH (M etropolis-Hasting)抽样算法,提高局部寻优和全局寻优能力;最后,通过三自由度弹簧-质量系统和三维桁架结构的数值算例验证所提模型修正方法,修正后参数相对误差均低于0.86%.结果 表明,所提方法修正后较高维参数的马尔可夫链能够快速收敛且样本接受率也有所提高,该方法也对随机噪声具有一定的鲁棒性.  相似文献   
992.
便携式近红外光谱仪现场快速检测是近红外光谱分析领域的一个重要的发展趋势。为了实现快速检测,便携式近红外光谱仪一般不配备温控装置,因此环境温度的变化会带来较大的测量误差。如何降低环境温度对检测结果带来的误差,是便携式近红外光谱仪在现场快速检测领域大规模推广所需要解决的一个重要问题。柴油的凝点值是评价柴油品质和适用范围的一个重要指标,对柴油凝点进行快速检测有重要的经济意义。通过便携式光谱仪采集了50种具有不同凝点的柴油样品在近红外波段(950~1 650 nm)的吸收光谱,研究了环境温度变化下的基于近红外光谱分析的柴油凝点快速检测方法。此光谱仪为基于数字微镜设计的便携式光谱仪,针对现场快检而研发,未配备温控样品池。在环境温度T0=25 ℃时基于偏最小二乘法建立了柴油凝点的预测模型,并分别将不同环境温度(TE=-10,0,10,20,30,40和50 ℃)条件下测量的近红外光谱带入上述凝点预测模型,分析预测偏差随环境温度相对参考值变化(TE-T0)的依赖关系。通过一次函数对预测误差随环境温度的变化关系进行拟合,发现凝点预测偏差的平均值随环境温度的变化关系为Δ=-0.019 8(TE-T0)。将环境温度的修正因子带入25 ℃条件下预测模型,建立了针对环境温度变化的温度修正模型。在温度修正以后,10 ℃条件下预测凝点的均方根误差由原来的14.6降为8.8,相关系数由原来的0.4提升为0.7。研究表明,本温度修正模型可以有效降低环境温度对预测结果带来的误差。基于此温度修正模型,可以显著降低近红外光谱分析建模过程的工作量,在某一特定温度条件下建立预测模型后将此温度修正项带入模型即可用于在其他环境温度条件下进行柴油凝点值的预测,而不需要在其他多个温度条件下分别建立预测模型,可显著提高建模效率和便携式近红外光谱快速检测的温度适应性。  相似文献   
993.
首先按照先前学者的思路,利用传统的向量自回归-误差修正(VECM)模型进行分析,结果发现期货对现货有明显的引领效应.但若对特定的异常时段进行分析,期货引领现货的效应有所减弱但仍比较明显.考虑到VECM模型自身存在的一些问题,又尝试了遗传算法、最优热路径方法等非参数统计方法.其中,遗传算法收效甚微,但最优热路径算法得到了期货长期领先现货平均2.45分钟、而在2015年股灾期间,期现货之间的领先滞后关系出现了一定程度上的反转的结论.最终本文尝试使用支持向量机(SVM)方法对这一问题进行研究,将数据的尺度从大到小进行分析,目标从寻找长期关系转到短期关系,但最终效果不甚理想.因此认为用SVM很难训练出一个让人满意的分类器,仅用期货、现货等数据预测市场走势无论是短期还是长期来看都是十分困难的.  相似文献   
994.
995.
996.
激光聚变黑腔中等离子体的热流研究   总被引:1,自引:0,他引:1       下载免费PDF全文
辐射流体采用限流的局域Spitzer-Harm(S-H)电子热流近似,在预估等离子体状态时可能与实验观察存在偏差.利用一维(1D3V)含碰撞的粒子模拟程序,研究了激光聚变黑腔中金等离子体的电子分布函数和电子热流.分析表明,在等离子体的冕区,α=Z(νos/νte)^2>1,电子分布函数表现为超高斯分布(m=3.34),克努森数λe/Le=0.011大于局域S-H理论的临界值2×10^-3.这导致了局域S-H电子热流远大于实际热流.这种实际热流受限现象将导致辐射流体模拟给出的冕区电子温度高于神光实验测量值.而在等离子体的高密度区域,电子分布函数仍表现为超高斯分布(m=2.93),克努森数λe/Le=7.58×10^-4小于局域S-H理论的临界值,限流的局域S-H电子热流具有一定的适用性.但电子热流严重依赖于限流因子,辐射流体模拟需要根据不同位置的光强和电子温度调整的大小.  相似文献   
997.
传统LBM方法在用来分析大雷诺数非牛顿流体时,体现出较低的稳定性和精度,当逐步增大雷诺数到一定数值时,此种现象更为突出。文中针对这个问题,提出一种修正LBM可以有效提高大雷诺数的Herschel-Bulkley流体流动分析时的稳定性和精度,将Herschel-Bulkley流体的非牛顿性看作一项特殊的外力项,并将上述提出的方法应用于顶盖驱动流的数值模拟分析中,讨论了在剪切变稀和剪切增稠两种情况下,逐步增大雷诺数时流线图以及主涡中心位置的变化,结果证明提出的方法可以有效应用于大雷诺数Herschel-Bulkley流体流动的分析中。为了验证此方法的可行性,利用泊肃叶流的理论解与上述方法的数值解进行对比,并分析了初始屈服应力,幂律指数以及格子大小对LBM数值模拟结果的影响。  相似文献   
998.
结构优化半解析灵敏度及误差修正改进算法   总被引:1,自引:0,他引:1  
提出结构半解析灵敏度分析及其针对刚体位移的误差修正方法的改进算法, 构建灵敏度分析与误差修正项可分离形式. 该方法实现简便, 数值精度不受摄动步长与单元数目的影响. 首先从总体角度推得静力问题的误差修正半解析灵敏度分析方法, 提出了位移误差修正灵敏度列式, 并给出算法实施途径; 然后将此思路推广于自振频率、屈曲临界载荷问题, 提出了相应的计算步骤. 随后, 给出梁单元与壳单元误差修正项的具体推导方法, 并分别使用两种单元构建有限元模型进行算例测试. 结果表明, 该方法适用于多种分析类型, 数值精度不受单元数目与摄动步长的影响. 由于灵敏度分析与误差修正项可以分开计算, 该方法支持将误差修正项直接叠加于灵敏度求解结果进行误差修正, 使已有灵敏度分析程序得到充分利用. 尤其对于复杂工程结构的优化设计, 特别是形状优化设计以及尺寸、形状混合优化设计, 相比于原误差修正方法, 实现更为简便, 效率有所提升, 能为半解析灵敏度分析方法及其程序实现提供新的思路.   相似文献   
999.
基于新修正偶应力理论,建立了能描述尺度效应的各向异性功能梯度微梁的屈曲分析模型。基于最小势能原理推导了控制方程及边界条件,并以简支梁为例分析了屈曲载荷及尺度效应受材料尺度参数和几何尺寸的影响。算例结果表明,在材料几何尺寸较小时,本文模型预测到的屈曲载荷明显大于传统理论的结果,有效地反映了尺度效应。几何尺寸较大时,尺度效应消失,本文模型将自动退化为传统宏观模型。模型反映出不同方向上的尺度参数对各向异性材料影响的效果不同。  相似文献   
1000.
以新修正偶应力理论为基础,首次提出了机械载荷与热载荷共同作用下的微尺度Mindlin层合板热稳定性模型,该模型只引入一个材料尺度参数,通过虚功原理推导出了控制方程和边界条件,以四边简支方板为例,进行了热稳定性分析,应用纳维叶解法得到解析解。结果表明,所建模型可以捕捉到尺度效应。材料尺度参数值越大,屈曲临界温度越高;当跨厚比增大时,屈曲临界温度下降;随着板几何参数的增大,模型将退化为宏观模型;温度变化量越大,考虑热载荷作用下的屈曲临界载荷越大,尺度效应体现越显著。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号