首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3257篇
  免费   496篇
  国内免费   93篇
化学   3443篇
晶体学   81篇
力学   9篇
综合类   6篇
数学   137篇
物理学   170篇
  2024年   5篇
  2023年   36篇
  2022年   42篇
  2021年   83篇
  2020年   142篇
  2019年   97篇
  2018年   95篇
  2017年   68篇
  2016年   187篇
  2015年   154篇
  2014年   202篇
  2013年   255篇
  2012年   226篇
  2011年   180篇
  2010年   158篇
  2009年   200篇
  2008年   238篇
  2007年   266篇
  2006年   202篇
  2005年   218篇
  2004年   200篇
  2003年   110篇
  2002年   54篇
  2001年   48篇
  2000年   54篇
  1999年   60篇
  1998年   50篇
  1997年   47篇
  1996年   42篇
  1995年   37篇
  1994年   18篇
  1993年   14篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有3846条查询结果,搜索用时 15 毫秒
11.
12.
The notion of weak attractive ligand–polymer interactions is introduced, and its potential application, importance, and conceptual links with “cooperative” ligand–substrate interactions are discussed. Synthetic models of weak attractive ligand–polymer interactions are described, in which intramolecular weak C? H???F? C interactions (the existence of which remains contentious) have been detected by NMR spectroscopy and neutron and X‐ray diffraction experiments. These C? H???F? C interactions carry important implications for the design of catalysts for olefin polymerization, because they provide support for the practical feasibility of ortho‐F???Hβ ligand–polymer contacts proposed for living Group 4 fluorinated phenoxyimine catalysts. The notion of weak attractive noncovalent interactions between an “active” ligand and the growing polymer chain is a novel concept in polyolefin catalysis.  相似文献   
13.
The traditional use of LIBOR futures prices to obtain surrogates for the Eurodollar forward rates is proved to yield a systematic bias in the pricing of Eurodollar swaps when one assumes that the yield curve is well described by the Heath-Jarrow-Morton model. The resulting theoretical inequality is consistent with the empirical observations of Burghardt and Hoskins (1995), and it provide a theoretical basis for price anomalies that are suggested by more recent empirical data.  相似文献   
14.
Summary. The surface modification of nanoparticles via azide/alkine-1,3-dipolar cycloaddition-reactions is described. Ligand exchange onto various nanoparticles was monitored by 1H NMR spectroscopy and formed the basis for the attachment of ligands onto the nanoparticles and their subsequent modification by dipolar cycloaddition reactions. Nanoparticle-surfaces were monitored by binding onto self-assembled monolayers derivatized with matching supramolecular interactions after derivatization.  相似文献   
15.
The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (ΔG°=−9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (ΔG°=−3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable ΔHbinding (−32 kcal/mol) despite an unfavorable −TΔS°binding (+22 kcal/mol). The solution structure of the MutT–Mg2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H–15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8=O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position −119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3–0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT–Mg2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of Asn-119 in the selective binding of 8-oxo-dGMP, likely donating a single hydrogen bond to its C6=O. The R78K+N119A double mutant weakened the binding of 8-oxo-dGMP (KIslope=3.1 mM) by 6.5±0.2 kcal/mol which overlaps, within error with the sum of the effects of the two single mutants (6.0±0.3 kcal/mol). Such additive effects of the two single mutants in the double mutant are most simply explained by the independent functioning of Asn-119 and Arg-78 in the binding of 8-oxo-dGMP. Independent functioning of these two residues in nucleotide binding is consistent with their locations in the MutT–Mg2+-8-oxo-dGMP complex, on opposite sides of the active site cleft, with a distance of 8.4±0.5 Å between their side chain nitrogens.  相似文献   
16.
Three hydrated aluminosilicate frameworks—LiABW, NaNAT, and BaEDI—are partly optimized with the periodic Hartree–Fock CRYSTAL95 code. In particular, we optimized the positions of the adsorbed water molecules including the positions of the framework cations (ABW, NAT) or part of the framework atomic positions (ABW). This allowed us to compare cation–water clusters in the gas and adsorbed states and discuss the influence of hydrogen bonding to the framework oxygen atoms or to the neighbor water molecules on the atomic properties (quadrupole coupling constant, anisotropy of electric field gradient) of the adsorbed water molecules. The LiBIK structure obtained from X‐ray diffraction is also considered to illustrate the hydrogen bonds occurring between adsorbed water molecules. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   
17.
Ab initio calculations have been performed on a series of complexes formed between halogen-containing molecules and ammonia to gain a deeper insight into the nature of halogen bonding. It appears that the dihalogen molecules form the strongest halogen-bonded complexes with ammonia, followed by HOX; the charge-transfer-type contribution has been demonstrated to dominate the halogen bonding in these complexes. For the complexes involving carbon-bound halogen molecules, our calculations clearly indicate that electrostatic interactions are mainly responsible for their binding energies. Whereas the halogen-bond strength is significantly enhanced by progressive fluorine substitution, the substitution of a hydrogen atom by a methyl group in the CH(3)X...NH(3) complex weakened the halogen bonding. Moreover, remote substituent effects have also been noted in the complexes of halobenzenes with different para substituents. The influence of the hybridization state of the carbon atom bonded to the halogen atom has also been examined and the results reveal that halogen-bond strengths decrease in the order HC triple bond CX > H(2)C=CHX approximately O=CHX approximately C(6)H(5)X > CH(3)X. In addition, several excellent linear correlations have been established between the interaction energies and both the amount of charge transfer and the electrostatic potentials corresponding to an electron density of 0.002 au along the R-X axis; these correlations provide good models with which to evaluate the electron-accepting abilities of the covalently bonded halogen atoms. Finally, some positively charged halogen-bonded systems have been investigated and the effect of the charge has been discussed.  相似文献   
18.
19.
The self‐complementary tetrameric propargyl triols 8, 14, 18 , and 21 were synthesized to investigate the duplex formation of self‐complementary, ethynylene‐linked UUAA, AAUU, UAUA, and AUAU analogues with integrated bases and backbone (ONIBs). The linear synthesis is based on repetitive Sonogashira couplings and C‐desilylations (34–72% yield), starting from the monomeric propargyl alcohols 9 and 15 and the iodinated nucleosides 3, 7, 11 , and 13 . Strongly persistent intramolecular H‐bonds from the propargylic OH groups to N(3) of the adenosine units prevent the gg‐type orientation of the ethynyl groups at C(5′). As such, an orientation is required for the formation of cyclic duplexes, this H‐bond prevents the formation of duplexes connected by all four base pairs. However, the central units of the UAUA and AAUU analogues 18 and 14 associate in CDCl3/(D6)DMSO 10 : 1 to form a cyclic duplex characterized by reverse Hoogsteen base pairing. The UUAA tetramer 8 forms a cyclic UU homoduplex, while the AUAU tetramer 21 forms only linear associates. Duplex formation of the O‐silylated UUAA and AAUU tetramers is no longer prevented. The self‐complementary UUAA tetramer 22 forms Watson–Crick‐ and Hoogsteen‐type base‐paired cyclic duplexes more readily than the sequence‐isomeric AAUU tetramer 23 , further illustrating the sequence selectivity of duplex formation.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号