首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10767篇
  免费   992篇
  国内免费   1336篇
化学   735篇
晶体学   16篇
力学   622篇
综合类   287篇
数学   9483篇
物理学   1952篇
  2024年   15篇
  2023年   123篇
  2022年   108篇
  2021年   177篇
  2020年   208篇
  2019年   259篇
  2018年   246篇
  2017年   279篇
  2016年   308篇
  2015年   240篇
  2014年   476篇
  2013年   708篇
  2012年   438篇
  2011年   624篇
  2010年   589篇
  2009年   769篇
  2008年   835篇
  2007年   890篇
  2006年   712篇
  2005年   659篇
  2004年   497篇
  2003年   569篇
  2002年   484篇
  2001年   392篇
  2000年   447篇
  1999年   389篇
  1998年   365篇
  1997年   292篇
  1996年   210篇
  1995年   115篇
  1994年   125篇
  1993年   74篇
  1992年   56篇
  1991年   54篇
  1990年   40篇
  1989年   30篇
  1988年   33篇
  1987年   17篇
  1986年   14篇
  1985年   37篇
  1984年   32篇
  1983年   13篇
  1982年   28篇
  1981年   15篇
  1980年   20篇
  1979年   19篇
  1978年   12篇
  1977年   12篇
  1976年   9篇
  1936年   6篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
81.
On Covariant Phase Space and the Variational Bicomplex   总被引:1,自引:0,他引:1  
The notion of a phase space in classical mechanics is well known. The extension of this concept to field theory however, is a challenging endeavor, and over the years numerous proposals for such a generalization have appeared in the literature. In this paper We review a Hamiltonian formulation of Lagrangian field theory based on an extension to infinite dimensions of J.-M. Souriau's symplectic approach to mechanics. Following G. Zuckerman, we state our results in terms of the modern geometric theory of differential equations and the variational bicomplex. As an elementary example, we construct a phase space for the Monge–Ampere equation.  相似文献   
82.
The authors give the necessary and sufficient conditions for a generalized circle in a Weyl hypersurface to be generalized circle in the enveloping Weyl space. They then obtain the neccessary and sufficient conditions under which a generalized concircular transformation of one Weyl space onto another induces a generalized transformation oil its subspaces. Finally, it is shown that any totally geodesic or totally umbilical hypersurface of a generalized concircularly flat Weyl space is also generalized concircularly flat.  相似文献   
83.
本文引入了一种满足更一般的收缩不等式的多重函数类,并证明了属于该类的可测多重函数对的一些随机重合点定理。  相似文献   
84.
We prove that all invariant distances on the universal Teichmuller space agree and are determined by the Grunsky coefficients of the naturally related conformal maps. This fact yields various important consequences; in particular, we obtain solutions of certain well-known geometric problems in complex analysis and related fields.  相似文献   
85.
K-强凸空间的一些性质   总被引:4,自引:0,他引:4  
结合Banach空间的Drop性,利用K维体积给出了K—强凸空间的一个新的定义,同时也给出了K—强光滑空间定义的K维体积表示,然后利用单位圆的切片证明了K—强凸空间是自反空间,进而证明了K—强凸空间与K—强光滑空间是一对对偶空间.最后利用Drop性的切片描述证明了K—强凸空间具有Drop性.  相似文献   
86.
Let(X,‖·‖ ) be a Banach space.Let K be a nonempty closed,convex subset of Xand T∶K→K.Assume that T is Lipschitzian,i.e.there exists L>0 such that‖ T(x) -T(y)‖≤ L‖ x -y‖for all x,y∈K.Withoutloss of generality,assume that L≥ 1 .Assume also that T is strictly pseudocontractive.According to[1 ] this may be statedas:there exists k∈ (0 ,1 ) such that‖ x -y‖≤‖ x -y + r[(I -T -k I) x -(I -T -k I) y]‖for all r>0 and all x,y∈ K.Throughout,let N denote the set of positive in…  相似文献   
87.
遥感器CCD驱动器热设计及其在摄像过程中的温度变化   总被引:3,自引:3,他引:0  
丁延卫  卢锷 《光学技术》2003,29(2):172-173
CCD驱动器是航天成像遥感器摄像过程中的主要热源之一。防止CCD驱动器过热是保证其正常工作的重要方面。介绍了遥感器的工作模式和对CCD驱动器采取的热控制措施。通过热平衡试验,利用回归的方法,对CCD驱动器在摄像过程中的温度变化规律进行了分析,同时对热控制效果进行了评估。CCD驱动器工作时升温速率在0.85℃/min左右,整个摄像过程中最高温度约为26℃,所实施的热控制措施效果理想。  相似文献   
88.
We prove that every JB* triple with rank one bicircular projection is a direct sum of two ideals, one of which is isometrically isomorphic to a Hilbert space.

  相似文献   

89.
90.
A generally covariant wave equation is derived geometrically for grand unified field theory. The equation states most generally that the covariant d'Alembertian acting on the vielbein vanishes for the four fields which are thought to exist in nature: gravitation, electromagnetism, weak field and strong field. The various known field equations are derived from the wave equation when the vielbein is the eigenfunction. When the wave equation is applied to gravitation the wave equation is the eigenequation of wave mechanics corresponding to Einstein's field equation in classical mechanics, the vielbein eigenfunction playing the role of the quantized gravitational field. The three Newton laws, Newton's law of universal gravitation, and the Poisson equation are recovered in the classical and nonrelativistic, weak-field limits of the quantized gravitational field. The single particle wave-equation and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the wave equation when scalar components are considered of the vielbein eigenfunction of the quantized gravitational field. The Schrödinger equation is recovered in the non-relativistec, weak-field limit of the Klein-Gordon equation). The Dirac equation is recovered in this weak-field limit of the quantized gravitational field (the nonrelativistic limit of the relativistic, quantezed gravitational field when the vielbein plays the role of the spinor. The wave and field equations of O(3) electrodynamics are recovered when the vielbein becomes the relativistic dreibein (triad) eigenfunction whose three orthonormal space indices become identified with the three complex circular indices (1), (2), (3), and whose four spacetime indices are the indices of non-Euclidean spacetime (the base manifold). This dreibein is the potential dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector for each index (1), (2), (3)). The wave equation of the parity violating weak field is recovered when the orthonormal space indices of the relativistic dreibein eigenfunction are identified with the indices of the three massive weak field bosons. The wave equation of the strong field is recovered when the orthonormal space indices of the relativistic vielbein eigenfunction become the eight indices defined by the group generators of the SU (3) group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号