首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   28篇
  国内免费   13篇
化学   35篇
力学   4篇
综合类   1篇
数学   3篇
物理学   79篇
  2022年   4篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   10篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   9篇
  2008年   2篇
  2007年   8篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
101.
光脉冲在标准单模光纤中演化形成孤子的实验研究   总被引:3,自引:0,他引:3  
刘山亮  郑宏军 《光学学报》2006,26(9):313-1318
利用二次谐波频率分辨光学门脉冲分析仪从实验上分析研究了具有啁啾的10 GHz光脉冲在不同输入功率下演化形成孤子的规律和特点。实验发现:输入脉冲在光纤中传输3.5个色散长度时,其时间宽度、频率啁啾和时间带宽积都随着输入功率的增加而减小。当输入功率大于一阶孤子功率的理论值时,光脉冲能够演化形成孤子;脉冲在随后传输过程中其宽度基本保持不变,波形、频率啁啾和时间带宽积仍随着传输距离的变化而变化;输入功率越高,形成的一阶孤子脉冲的宽度越窄。当输入功率小于一阶孤子功率的理论值时,输出脉冲的时间宽度随着传输距离的增加而增加,频率啁啾随着传输距离的增加而减小,光脉冲不能演化形成孤子。  相似文献   
102.
孙萍  谢敬辉 《光学学报》2006,26(1):9-53
提出了菲涅耳波带板(FZP)无运动卷积偏振选通全息术,该技术的原理与菲涅耳波带板扫描全息术相同,但在成像系统结构上作了重大改进,改进内容主要有两个方面:第一,使用扩展光源,用多个菲涅耳波带板在物体上的投影叠加形成卷积运算来取代机械扫描,克服了扫描造成的系统不稳定性和限制实际应用的耗时问题;第二,用CCD取代光电倍增管,使物体上所有的点都同时成像在CCD靶面上,达到实时采集整个全息图的目的。对线偏振光和圆偏振光经过散射介质脂肪乳剂(Intralipid)溶液后偏振度的变化规律进行了实验研究,研究表明,在米氏散射区,圆偏振光比线偏振光更容易保持偏振态。应用菲涅耳波带板无运动卷积偏振选通成像系统,采用圆偏振光作为入射光,对嵌埋在浓度为1%、深度为2 cm的脂肪乳剂溶液中的金属丝(直径0.4 mm)进行了成像实验,结果表明,菲涅耳波带板无运动卷积偏振选通全息术原理是可行的。  相似文献   
103.
For connecting flow-through analytical methods with capillary electrophoresis, a chip working in the air-assisted flow gating interface regime is cast from poly(dimethylsiloxane). In the injection space, the exit from the delivery capillary is placed close to the entrance to the separation capillary. Prior to injecting the sample into the separation capillary, the background electrolyte is forced out of the injection space by a stream of air. In the empty space, a drop of the sample with a volume of <100 nL is formed between the exit from the delivery capillary and the entrance into the separation capillary, from which the sample is injected hydrodynamically into the separation capillary. After injection, the injection space is filled with BGE, and the separation can be begun. Three geometric variants for the mutual geometric arrangement of the delivery and separation capillaries were tested: the delivery capillary is placed perpendicular to the separation capillary, from either above or below, or the capillaries are placed axially, that is, directly opposite one another. All of the variants are equivalent from the analytical and separation efficiency viewpoints. The repeatability expressed by RSD is up to 5%. The tested flow gating interface variants are also suitable for continuous and discontinuous sampling at flow rates of the order of units of μL/min. The developed instrument for sequential electrophoretic analysis operates fully automatically and is suitable for rapid sequential monitoring of dynamic processes.  相似文献   
104.
When forces are applied to matter, the distribution of mass changes. Similarly, when an electric field is applied to matter with charge, the distribution of charge changes. The change in the distribution of charge (when a local electric field is applied) might in general be called the induced charge. When the change in charge is simply related to the applied local electric field, the polarization field P is widely used to describe the induced charge. This approach does not allow electrical measurements (in themselves) to determine the structure of the polarization fields. Many polarization fields will produce the same electrical forces because only the divergence of polarization enters Maxwell’s first equation, relating charge and electric forces and field. The curl of any function can be added to a polarization field P without changing the electric field at all. The divergence of the curl is always zero. Additional information is needed to specify the curl and thus the structure of the P field. When the structure of charge changes substantially with the local electric field, the induced charge is a nonlinear and time dependent function of the field and P is not a useful framework to describe either the electrical or structural basis-induced charge. In the nonlinear, time dependent case, models must describe the charge distribution and how it varies as the field changes. One class of models has been used widely in biophysics to describe field dependent charge, i.e., the phenomenon of nonlinear time dependent induced charge, called ‘gating current’ in the biophysical literature. The operational definition of gating current has worked well in biophysics for fifty years, where it has been found to makes neurons respond sensitively to voltage. Theoretical estimates of polarization computed with this definition fit experimental data. I propose that the operational definition of gating current be used to define voltage and time dependent induced charge, although other definitions may be needed as well, for example if the induced charge is fundamentally current dependent. Gating currents involve substantial changes in structure and so need to be computed from a combination of electrodynamics and mechanics because everything charged interacts with everything charged as well as most things mechanical. It may be useful to separate the classical polarization field as a component of the total induced charge, as it is in biophysics. When nothing is known about polarization, it is necessary to use an approximate representation of polarization with a dielectric constant that is a single real positive number. This approximation allows important results in some cases, e.g., design of integrated circuits in silicon semiconductors, but can be seriously misleading in other cases, e.g., ionic solutions.  相似文献   
105.
106.
107.
108.
The segregation of cellular surfaces in heterogeneous patches is considered to be a common motif in bacteria and eukaryotes that is underpinned by the observation of clustering and cooperative gating of signaling membrane proteins such as receptors or channels. Such processes could represent an important cellular strategy to shape signaling activity. Hence, structural knowledge of the arrangement of channels or receptors in supramolecular assemblies represents a crucial step towards a better understanding of signaling across membranes. We herein report on the supramolecular organization of clusters of the K+ channel KcsA in bacterial membranes, which was analyzed by a combination of DNP‐enhanced solid‐state NMR experiments and MD simulations. We used solid‐state NMR spectroscopy to determine the channel–channel interface and to demonstrate the strong correlation between channel function and clustering, which suggests a yet unknown mechanism of communication between K+ channels.  相似文献   
109.
It is demonstrated that the uptake and release of hydrophobic drugs/dyes by mesoporous silica nanoparticles (MSN) is critically dependent on the functional groups present on their outer surfaces. For this, amphifunctional MSNs are synthesized, possessing hydrophobic pores and hydrophilic functional groups on the outer surface. Further, the outer surface is modified with a different chain length of molecules, e.g., propargyl alcohol, triethylene glycol, and PEG (2000) via azide–alkyne click chemistry. The effect of these different surface functional groups on uptake of drug/dye is demonstrated with Nile red, proflavine (free base form), and rhodamine 6G. The uptake of these molecules is found to be inversely proportional to the bulkiness of surface functionality. To counter this effect, an alternate method of loading is proposed and demonstrated. Finally, the effect of these different functional groups on the release of loaded drug proflavine is studied, which supports the hypothesis that bulkier outer surface groups also hinder the release of drugs loaded in the porous MSN.  相似文献   
110.
The fundamental principle of molecular electronics is to comprehend electrical properties of single molecules connected between two probe electrodes. In recent years, substantial advances in this field have been made to underpin experimental and theoretical understanding of single molecule electrochemistry. By using scanning tunneling microscope (STM) break-junction technique, the switching events of electrical current from single molecule bridge tuning by electrochemical gating are investigated to uncover the relationship between electrochemical electron transfer and charge transport processes in chemical and biological molecule junctions. In this short review, we outline the latest works of single molecule electrochemistry studied with STM break-junction technique from Nongjian Tao's group, and share the insights on the opportunities and challenges for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号