首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17671篇
  免费   3106篇
  国内免费   2759篇
化学   12334篇
晶体学   64篇
力学   460篇
综合类   276篇
数学   5247篇
物理学   5155篇
  2024年   54篇
  2023年   239篇
  2022年   404篇
  2021年   680篇
  2020年   739篇
  2019年   774篇
  2018年   633篇
  2017年   770篇
  2016年   1114篇
  2015年   1067篇
  2014年   1251篇
  2013年   1792篇
  2012年   1255篇
  2011年   1348篇
  2010年   1118篇
  2009年   1277篇
  2008年   1280篇
  2007年   1312篇
  2006年   1107篇
  2005年   932篇
  2004年   751篇
  2003年   685篇
  2002年   474篇
  2001年   394篇
  2000年   347篇
  1999年   277篇
  1998年   242篇
  1997年   207篇
  1996年   151篇
  1995年   142篇
  1994年   105篇
  1993年   75篇
  1992年   66篇
  1991年   57篇
  1990年   42篇
  1989年   42篇
  1988年   40篇
  1987年   45篇
  1986年   30篇
  1985年   31篇
  1984年   37篇
  1983年   15篇
  1982年   26篇
  1981年   20篇
  1980年   19篇
  1979年   15篇
  1978年   17篇
  1977年   10篇
  1976年   9篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 200 毫秒
991.
To investigate the effects of oxygen-containing functional groups on the adsorption of volatile organic compounds (VOCs) with different polarity, oxygen-rich porous carbon materials (OPCs) were synthesized by heat treatment of glucose/potassium oxalate material. The carbon material had a large specific surface area (1697 m2 g−1) and a high oxygen content (18.95 at.%). OPC exhibited high adsorption capacity of toluene (309 mg g−1) and methanol (447 mg g−1). The specific surface area and total pore volume determined the adsorption capacity of toluene and methanol at the high-pressure range, while the oxygen-containing groups became the main factor affecting the methanol adsorption at the low-pressure range due to the hydrogen bond interaction through the density functional theory (DFT) calculations. This study provides an important hint for developing a novel O-doped adsorbent for the VOCs adsorption applications and analyzing the role of oxygen-containing groups in the VOCs adsorption under the low-pressure range.  相似文献   
992.
Fluorescent carbon nanodots (CDs) have been highlighted as promising semiconducting materials due to their outstanding chemical and optical properties. However, the intrinsic heterogeneity of CDs has impeded a clear understanding of the mechanisms behind their photophysical properties. In this study, as-prepared CDs are fractionated via chromatography to reduce their structural and chemical heterogeneity and analyzed through ensemble and single-particle spectroscopies. Many single particles reveal fluorescence intensity fluctuations between two or more discrete levels with bi-exponential decays. While the intrinsic τ1 components are uniform among single particles, the τ2 components from molecule-like emissions spans a wider range of lifetimes, reflecting the inhomogeneity of the surface states. Furthermore, it is concluded that the relative population and chemical states of surface functional groups in CDs have a significant impact on emissive states, brightness, blinking, stability, and lifetime distribution of photoluminescence.  相似文献   
993.
Brønsted acid-catalyzed inverse-electron demand (IED) aza-Diels-Alder reactions between 2-aza-dienes and ethylene were studied using quantum chemical calculations. The computed activation energy systematically decreases as the basic sites of the diene progressively become protonated. Our activation strain and Kohn-Sham molecular orbital analyses traced the origin of this enhanced reactivity to i) “Pauli-lowering catalysis” for mono-protonated 2-aza-dienes due to the induction of an asynchronous, but still concerted, reaction pathway that reduces the Pauli repulsion between the reactants; and ii) “LUMO-lowering catalysis” for multi-protonated 2-aza-dienes due to their highly stabilized LUMO(s) and more concerted synchronous reaction path that facilitates more efficient orbital overlaps in IED interactions. In all, we illustrate how the novel concept of “Pauli-lowering catalysis” can be overruled by the traditional concept of “LUMO-lowering catalysis” when the degree of LUMO stabilization is extreme as in the case of multi-protonated 2-aza-dienes.  相似文献   
994.
The controlled assembly of well-defined planar nanoclusters from molecular precursors is synthetically challenging and often plagued by the predominant formation of 3D-structures and nanoparticles. Herein, we report planar iron hydride nanoclusters from reactions of main group element hydrides with iron(II) bis(hexamethyldisilazide). The structures and properties of isolated Fe4, Fe6, and Fe7 nanoplatelets and calculated intermediates enable an unprecedented insight into the underlying building principle and growth mechanism of iron clusters, metal monolayers, and nanoparticles.  相似文献   
995.
The unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand canonical ensemble (GCE) have enabled to explicitly include and control the electrode potential in first principles calculations. In this review, recent advances and future promises of GCE density functional theory and rate theory are discussed. Particular focus is devoted to considering how the GCE methods either by themselves or combined with model Hamiltonians can be used to address intricate phenomena such as solvent/electrolyte effects and nuclear quantum effects to provide a detailed understanding of electrochemical reactions and interfaces.  相似文献   
996.
The aromaticity of metal-metal quintuple bonded complexes of the type M2L2 (M=Cr, Mo, and W; L=amidinate) are studied employing gauge including magnetically induced ring current (GIMIC) analysis and electron density of delocalized bonds (EDDB). It is found that the complexes possess two types of aromaticity: i) Hückel aromaticity through delocalization of ligand π electrons with metal-metal δ-bond-forming 6 conjugated electrons (4π and 2δ) ring; ii) Craig-Möbius aromaticity through delocalization of π electrons of both the ligands with metal d-orbitals in Craig type orientation forming 10π electrons ring with a double twist. Extended transition state natural orbital chemical valence (ETS-NOCV) and canonical molecular orbital natural chemical shielding (CMO-NCS) analysis confirm the Craig-Möbius type arrangement of the orbitals. Furthermore, the unprecedented Hückel and Möbius type aromaticity is confirmed from the plot of the current pathways using 3D line integral convolution (3D-LIC) plots. The metal-metal bond order also increases down the group as justified from the complete active space self-consistent field (CASSCF) analysis. Due to an increase in the π and δ electron conjugation, both the Hückel and Möbius aromaticity increase down the group.  相似文献   
997.
Single-atom catalysts (SACs) have attracted extensive attention owing to their high catalytic activity. The development of efficient SACs is crucial for applications in heterogeneous catalysis. In this article, the geometric configuration, electronic structure, stabilitiy and catalytic performance of phosphorene (Pn) supported single metal atoms (M=Ru, Rh, Pd, Ir, Pt, and Au) have been systematically investigated using density functional theory calculations and ab initio molecular dynamics simulations. The single atoms are found to occupy the hollow site of phosphorene. Among the catalysts studied, Ru-decorated phosphorene is determined to be a potential catalyst by evaluating adsorption energies of gaseous molecules. Various mechanisms including the Eley-Rideal (ER), Langmuir-Hinshelwood (LH) and trimolecular Eley-Rideal (TER) mechanisms are considered to validate the most favourable reaction pathway. Our results reveal that Ru−Pn exhibits outstanding catalytic activity toward CO oxidation reaction via TER mechanism with the corresponding rate-determining energy barrier of 0.44 eV, making it a very promising SAC for CO oxidation under mild conditions. Overall, this work may provide a new avenue for the design and fabrication of two-dimensional materials supported SACs for low-temperature CO oxidation.  相似文献   
998.
Hyperpolarized [1-13C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13C]fumarate at sufficient 13C polarization for ex vivo detection of hyperpolarized 13C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.  相似文献   
999.
The construction of hybrid metal-ion batteries faces a plethora of challenges. A critical one is to unveil the solvation/desolvation processes at the molecular level in electrolytes that ensure efficient transfer of several types of charge carriers. This study reports first results on simulations of mixed-ion electrolytes. All combinations of homo- and hetero-binuclear complexes of Li+, Na+ and Mg2+, solvated with varying number of ethylene carbonate (EC) molecules are modeled in non-polar and polar environment by means of first principles calculations and compared to the mononuclear analogues in terms of stability, spatial organization, charge distribution and solvation/desolvation behavior. The used PF6 counterion is shown to have minor impact on the geometry of the complexes. The desolvation energy penalty of binuclear complexes can be lowered by the fluoride ions, emerging upon the PF6 decay. These model investigations could be extended to rationalize the solvation structure and ionic mobility in dual-ion electrolytes.  相似文献   
1000.
Due to their potential binding sites, barbituric acid (BA) and its derivatives have been used in metal coordination chemistry. Yet their abilities to recognize anions remain unexplored. In this work, we were able to identify four structural features of barbiturates that are responsible for a certain anion affinity. The set of coordination interactions can be finely tuned with covalent decorations at the methylene group. DFT-D computations at the BLYP-D3(BJ)/aug-cc-pVDZ level of theory show that the C−H bond is as effective as the N−H bond to coordinate chloride. An analysis of the electron charge density at the C−H⋅⋅⋅Cl and N−H⋅⋅⋅Cl bond critical points elucidates their similarities in covalent character. Our results reveal that the special acidity of the C−H bond shows up when the methylene group moves out of the ring plane and it is mainly governed by the orbital interaction energy. The amide and carboxyl groups are the best choices to coordinate the ion when they act together with the C−H bond. We finally show how can we use this information to rationally improve the recognition capability of a small cage-like complex that is able to coordinate NaCl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号