首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18372篇
  免费   3383篇
  国内免费   2876篇
化学   9735篇
晶体学   185篇
力学   1585篇
综合类   214篇
数学   3073篇
物理学   9839篇
  2024年   54篇
  2023年   237篇
  2022年   393篇
  2021年   615篇
  2020年   777篇
  2019年   615篇
  2018年   606篇
  2017年   705篇
  2016年   834篇
  2015年   716篇
  2014年   1080篇
  2013年   1586篇
  2012年   1087篇
  2011年   1192篇
  2010年   1043篇
  2009年   1277篇
  2008年   1288篇
  2007年   1300篇
  2006年   1252篇
  2005年   994篇
  2004年   890篇
  2003年   820篇
  2002年   689篇
  2001年   607篇
  2000年   584篇
  1999年   532篇
  1998年   452篇
  1997年   353篇
  1996年   299篇
  1995年   251篇
  1994年   226篇
  1993年   172篇
  1992年   137篇
  1991年   151篇
  1990年   94篇
  1989年   97篇
  1988年   89篇
  1987年   69篇
  1986年   69篇
  1985年   72篇
  1984年   50篇
  1983年   27篇
  1982年   46篇
  1981年   39篇
  1980年   33篇
  1979年   33篇
  1978年   12篇
  1977年   23篇
  1976年   13篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
The Poisson–Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N‐ and C‐terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules. © 2014 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   
992.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   
993.
This work characterizes eight stationary points of the P2 dimer and six stationary points of the PCCP dimer, including a newly identified minimum on both potential energy surfaces. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with the second‐order Møller–Plesset (MP2) electronic structure method and six different basis sets: aug‐cc‐pVXZ, aug‐cc‐pV(X+d)Z, and aug‐cc‐pCVXZ where X = T, Q. A new L‐shaped structure with C2 symmetry is the only minimum for the P2 dimer at the MP2 level of theory with these basis sets. The previously reported parallel‐slipped structure with C2h symmetry and a newly identified cross configuration with D2 symmetry are the only minima for the PCCP dimer. Single point energies were also computed using the canonical MP2 and CCSD(T) methods as well as the explicitly correlated MP2‐F12 and CCSD(T)‐F12 methods and the aug‐cc‐pVXZ (X = D, T, Q, 5) basis sets. The energetics obtained with the explicitly correlated methods were very similar to the canonical results for the larger basis sets. Extrapolations were performed to estimate the complete basis set (CBS) limit MP2 and CCSD(T) binding energies. MP2 and MP2‐F12 significantly overbind the P2 and PCCP dimers relative to the CCSD(T) and CCSD(T)‐F12 binding energies by as much as 1.5 kcal mol?1 for the former and 5.0 kcal mol?1 for the latter at the CBS limit. The dominant attractive component of the interaction energy for each dimer configuration was dispersion according to several symmetry‐adapted perturbation theory analyses. © 2014 Wiley Periodicals, Inc.  相似文献   
994.
We present a new implementation of a recent open‐ended response theory formulation for time‐ and perturbation‐dependent basis sets (Thorvaldsen et al., J. Chem. Phys. 2008, 129, 214108) at the Hartree–Fock and density functional levels of theory. A novel feature of the new implementation is the use of recursive programming techniques, making it possible to write highly compact code for the analytic calculation of any response property at any valid choice of rule for the order of perturbation at which to include perturbed density matrices. The formalism is expressed in terms of the density matrix in the atomic orbital basis, allowing the recursive scheme presented here to be used in linear‐scaling formulations of response theory as well as with two‐ and four‐component relativistic wave functions. To demonstrate the new code, we present calculations of the third geometrical derivatives of the frequency‐dependent second hyperpolarizability for HSOH at the Hartree–Fock level of theory, a seventh‐order energy derivative involving basis sets that are both time and perturbation dependent. © 2014 Wiley Periodicals, Inc.  相似文献   
995.
We present a detailed computational investigation of the induced‐fit motion in a nylon‐oligomer hydrolase (NylB) upon substrate binding. To this aim, we resort on the recently introduced parallel cascade selection molecular dynamics approach, allowing for an accelerated access to the set of conformational changes from an open‐ to a closed‐state structure to form the enzyme‐substrate complex in a specific induce‐fit mechanism. The structural investigation is quantitatively complemented by free energy analyses within the umbrella sampling algorithm accompanied by weighted histogram analysis. We find that the stabilization free energy is about 1.4 kcal/mol, whereas the highest free energy barrier to be overcome is about 2.3 kcal/mol. Conversely, the energetic contribution for the substrate binding is about 20 kcal/mol, as estimated from Generalized Born/Surface Area. This means that the open‐close induced‐fit motion could occur frequently once the substrate binds to the open state of NylB. © 2014 Wiley Periodicals, Inc.  相似文献   
996.
READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. © 2014 Wiley Periodicals, Inc.  相似文献   
997.
Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally‐determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet‐lab experimentation. © 2014 Wiley Periodicals, Inc.  相似文献   
998.
Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL‐2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single‐walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D–2 law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single‐wall components of the double‐wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross‐section of the external walls in the armchair‐like double‐wall nanotubes. © 2013 Wiley Periodicals, Inc.  相似文献   
999.
1000.
An little known yet significant issue in petroleum production processes in petroleum reservoirs is asphaltene precipitation/deposition. Asphaltene has not only a fuzzy and vague nature but it also can cause detrimental problems like reservoir blockage and, as a result, low oil recovery. To tackle this issue, many researchers have attempted to monitor asphaltene behavior versus thermodynamic conditions. A thermodynamic micellization approach is implemented in this work to describe asphaltene precipitation behavior for two sample fluids from Iranian reservoirs. First, the basic structures of the addressed approach and different contributions to Gibbs free energy of micellization proposed by Victorov and Firoozabadi (VF) are demonstrated. Second, a detailed sensitivity analysis with respect to the model parameters is performed by utilizing a new calculation strategy. Finally, a comparison between the predicted precipitation curve and the experimental one is illustrated; moreover, comparing our results with those reported by Victorov proves the superiority of the new strategy over the conventional one. The significance of this study shows the effect of each micellization parameter on the asphaltene precipitation behavior curve and illustrates the ability of the micellization approach evolved by VF in monitoring the effect of pressure on asphaltene precipitation using the new calculation procedure. Outcomes from this study could couple with commercial reservoir simulation software to improve precision and integrity for designing robust and effective production units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号