首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   6篇
  国内免费   71篇
化学   340篇
晶体学   2篇
力学   3篇
综合类   1篇
数学   24篇
物理学   255篇
  2024年   3篇
  2023年   33篇
  2022年   9篇
  2021年   3篇
  2020年   11篇
  2019年   11篇
  2018年   4篇
  2017年   8篇
  2016年   16篇
  2015年   6篇
  2014年   9篇
  2013年   71篇
  2012年   50篇
  2011年   22篇
  2010年   16篇
  2009年   19篇
  2008年   38篇
  2007年   72篇
  2006年   21篇
  2005年   25篇
  2004年   16篇
  2003年   17篇
  2002年   33篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   11篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有625条查询结果,搜索用时 15 毫秒
31.
The solid state postcure reaction mechanism of polyurethane elastomers (PU) synthesized using a relatively small excess (up to 10%) of isocyanate was studied. The postcure process succeeds especially with the assistance of atmospheric humidity and, its process velocity depends on PU sample thickness. The polymer network is consolidated mainly by the formation of a new urea group. The formation of allophanate, uretidinedione, and isocyanurate groups and possible reticulations by the intermediary amine groups formed, play only a secondary role in the studied conditions. Kinetic equations regarding the postcure evolution were followed by means of the changes in mechanical properties. The evolution of the process was correlated to different kinetic measurements regarding the elementary processes involved like the consumption of NCO groups, absorption of water from the atmospheric humidity, and desorption of CO2 resulted during the formation of urea group. The CO2 desorption appears to be the slowest dynamic process.  相似文献   
32.

The 3-acyl tetramic acids constitute a growing class of natural products displaying a range of biological activities. The g , g ' tricarbonyl moiety present in the 3-acyl tetramic acid provides a suitable site for bidentate complexation to a metal, which increases the biological activity. For the dielectric study of N-acetyl-3-butanoyl tetramic acid and a series of its complexes with Cu(II) and Co(II) in symmetric and asymmetric forms, we used the Thermally Stimulated Depolarization Currents (TSDC) technique. The drastic decrease of the intensity of the TSDC peaks of the symmetric and asymmetric complexes, compared to the above mentioned ligand, suggested that the polarizability of the side groups is considerably reduced. This result enhances the proposed complexation mode of the ligand through oxygen next to carbons 3 and 4 of the 5-member ring.  相似文献   
33.
Super-toughened poly(lactic acid) (PLA)/poly(ethylene-co-vinyl acetate) (EVA) blends were prepared via 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD) induced dynamic vulcanization and in situ interfacial compatibilization. The effects of AD on the morphology and properties of PLA/EVA blends were studied using a Brabender torque rheometer, gel content test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and mechanical properties test. The torque and gel content demonstrated that EVA and PLA was successfully vulcanized in the presence of free radicals obtained by the decomposition of the 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD). Additionally, the gel content results indicated that, compared with PLA, EVA is more aggressive with free radicals. The SEM revealed that a relatively uniform phase morphology and good interfacial compatibilization were achieved in the dynamically vulcanized PLA/EVA/AD blends. The interfacial reaction and compatibilization between the component polymers resulted in the formation of super-toughened PLA/EVA blended materials.  相似文献   
34.
The work is connected with the mathematical modeling of physical–chemical processes in which inner characteristics of materials are subjected to changes. The considered nonlinear parabolic models consist of a boundary value problem for a quasilinear parabolic equation with an unknown coefficient multiplying the derivative with respect to time and, moreover, involve an additional relationship for a time dependence of this coefficient. For such a system, conditions of unique solvability in a class of smooth functions are studied on the basis of the Rothe method. The proposed approach involves the proof of a priori estimates in the difference-continuous Hölder spaces for the corresponding differential-difference nonlinear system that approximates the original system by the Rothe method. These estimates allow one to establish the existence of the smooth solutions and to obtain the error estimates of the approximate solutions.As examples of applications of the considered nonlinear boundary value problems, the models of destruction of heat-protective composite under the influence of high temperature heating are discussed.  相似文献   
35.
Renewable propane-1,2,3-triyl tris(9-(oxiran-2-yl) nonanoate) (EGU, 100 wt% biogenic) and a tricarboxylic acid triglyceride (CGTU) hardener (85.7 wt% biogenic) were synthesized from 10-undecenoic acid (10-UDA) and used to produce epoxy resins with 52–92 wt% biobased carbon. CGTU was prepared by thermally activated thiol-ene coupling of thioglycolic acid onto propane-1,2,3-triyl tris(undec-10-enoate), (GUD) in the absence of solvent. The characterized CGTU was used as a green hardener of blends based on EGU and a conventional bisphenol A-based epoxy pre-polymer (DGEBA) at various mass percentages (0–100 wt%) with an stoichiometric epoxy/acid equivalent ratio. Calorimetric studies revealed higher peak temperature, lower reaction heats, and longer gelation times in resins with high EGU proportion, evidencing the lower reactivity of aliphatic EGU compared with aromatic DGEBA. Cured resins were yellowish transparent rubber-like materials with glass transition temperatures (Tg) varying from −14 °C to −42 °C and tensile strength in the range of 1750 kPa–790 kPa, for 0 and 100 wt % EGU, respectively. The soluble fraction of all resins was less than 4.3%, reflecting a high level of crosslinking. Thermosets with high biobased content showed both UV-light protection and visible light transparency.  相似文献   
36.

Linear dextran and helix amylose were covalently bonded with nonlinear optical (NLO) chromophores. The influence of the conformation of the polymer matrix on the NLO behavior of the supramolecular structure has been studied. The second order hyperpolarizability depends not only on the secondary structure of the biopolymer, but also on the position of the chromophore towards the polymeric backbone. Functionalization of NLO-phores with biopolymers led to increased thermo- and photostability.  相似文献   
37.
Poly(β-hydroxybutyrate) (PHB) is a bio-based and biodegradable aliphatic polyester, however its application is limited by some disadvantages such as high price, brittleness, poor processability and low melt-strength due to serious thermal degradation. Partial crosslinking initiated by dicumyl peroxide (DCP) was applied in this work to improve the performance of poly(β-hydroxybutyrate)/poly(d,l-lactic acid) (PHB/PDLLA) blends. The partial crosslinking of the blends and its effect on the properties, morphology, rheology and thermal behavior of the blends were investigated. The tensile strength and impact toughness of the PHB were increased by incorporation of the PDLLA, which were improved further after the partial crosslinking because of an increased compatibility between the PHB and the PDLLA phases. The rheological study revealed that the storage modulus (G′) and complex viscosity (η*) of the blends were increased after addition of the DCP. On the other hand, the crystallization of PHB in the blends was restricted to a certain extent by the formation of partially crosslinked network while its crystal form was not modified.  相似文献   
38.
Polymer recycling is a way to reduce environmental problems caused by polymeric waste accumulation generated from day-to-day applications of polymer materials such packaging and construction. The recycling of polymeric waste helps to conserve natural resource because the most of polymer materials are made from oil and gas. This paper reviews the recent progress on recycling of polymeric waste form some traditional polymers and their systems (blends and composites) such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), and introduces the mechanical and chemical recycling concepts. In addition, the effect of mechanical recycling on properties including the mechanical, thermal, rheological and processing properties of the recycled materials is highlighted in the present paper.  相似文献   
39.
The paper aims to study blend properties of biodegradable polymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactide (PLA) prepared by melt mixing. Blend compositions based on PHBV/PLA were investigated according to the following weight ratios, i.e. 100/0, 75/25, 50/50, 25/75 and 0/100 wt%. The study showed through scanning electron microscopy (SEM) that blends of PHBV/PLA are not miscible. This is consistent with differential scanning calorimetry (DSC) data which indicate the presence of two distinct glass transition temperatures (Tg) and melting temperatures (Tm), attributed to the neat polymers, over all the range of blend compositions. Water and oxygen barrier properties of PHBV/PLA blends are significantly improved with increasing the PHBV content in the blend. Further, morphological analyzes indicated that increasing the PHBV content in the polymer blends results in increasing the PLA crystallinity due to the finely dispersed PHBV crystals acting as a filler and a nucleating agent for PLA. On the other hand, the addition of PLA to the blend results in a very impressive increase in the complex viscosity of PHBV. Moreover, the rheological data showed that, excluding the specific behavior of the neat polymers at low frequencies, i.e. less than 0.1 Hz, the complex viscosity of PHBV/PLA blends fits the mixing law well.  相似文献   
40.
赵京波 《高分子科学》2013,31(3):452-461
Two kinds of aliphatic alternating polyesteramide prepolymers were prepared through melt polycondensation from N,N’-bis(2-hydroxyethyl)-adipamide and adipic acid or sebacic acid. Chain extension of them was conducted with 2,2′-(1,4-phenylene)-bis(2-oxazoline) and adipoyl biscaprolactamate as combined chain extenders. The chain extended polyesteramides (ExtPEAs) were characterized by IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray scattering, tensile test and enzymatic degradation. The results showed that the ExtPEA(4,m)s were mainly constituted with the diester adipamide alternating units. ExtPEA(4,4) and ExtPEA(4,8) had Tm of 83.8℃ and 85.8℃ and initial decomposition temperature above 310.0℃. They crystallized similarly as Nylon-66 did and were flexible thermoplastic materials with tensile strength up to 25.64 MPa and strain at break up to 737%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号