首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   12篇
  国内免费   14篇
化学   15篇
力学   30篇
综合类   3篇
数学   258篇
物理学   54篇
  2024年   1篇
  2023年   7篇
  2022年   2篇
  2021年   15篇
  2020年   12篇
  2019年   11篇
  2018年   12篇
  2017年   11篇
  2016年   11篇
  2015年   13篇
  2014年   19篇
  2013年   30篇
  2012年   13篇
  2011年   18篇
  2010年   23篇
  2009年   14篇
  2008年   25篇
  2007年   24篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   12篇
  2002年   3篇
  2001年   11篇
  2000年   5篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
91.
In this paper, we study the Wong–Zakai approximations given by a stationary process via the Wiener shift and their associated dynamics of a class of stochastic evolution equations with a multiplicative white noise. We prove that the solutions of Wong–Zakai approximations almost surely converge to the solutions of the Stratonovich stochastic evolution equation. We also show that the invariant manifolds and stable foliations of the Wong–Zakai approximations converge to the invariant manifolds and stable foliations of the Stratonovich stochastic evolution equation, respectively.  相似文献   
92.
In this paper, we are interested in the Dirichlet boundary value problem for a multi-dimensional nonlinear conservation law with a multiplicative stochastic perturbation. Using the concept of measure-valued solutions and Kruzhkov?s semi-entropy formulations, a result of existence and uniqueness of the entropy solution is proved.  相似文献   
93.
This article establishes sufficient conditions for a linear-in-time bound on the non-asymptotic variance for particle approximations of time-homogeneous Feynman–Kac formulae. These formulae appear in a wide variety of applications including option pricing in finance and risk sensitive control in engineering. In direct Monte Carlo approximation of these formulae, the non-asymptotic variance typically increases at an exponential rate in the time parameter. It is shown that a linear bound holds when a non-negative kernel, defined by the logarithmic potential function and Markov kernel which specify the Feynman–Kac model, satisfies a type of multiplicative drift condition and other regularity assumptions. Examples illustrate that these conditions are general and flexible enough to accommodate two rather extreme cases, which can occur in the context of a non-compact state space: (1) when the potential function is bounded above, not bounded below and the Markov kernel is not ergodic; and (2) when the potential function is not bounded above, but the Markov kernel itself satisfies a multiplicative drift condition.  相似文献   
94.
This article presents a new global solution algorithm for Convex Multiplicative Programming called the Outcome Space Algorithm. To solve a given convex multiplicative program (P D), the algorithm solves instead an equivalent quasiconcave minimization problem in the outcome space of the original problem. To help accomplish this, the algorithm uses branching, bounding and outer approximation by polytopes, all in the outcome space of problem (P D). The algorithm economizes the computations that it requires by working in the outcome space, by avoiding the need to compute new vertices in the outer approximation process, and, except for one convex program per iteration, by requiring for its execution only linear programming techniques and simple algebra.  相似文献   
95.
Connectivity of the support of the simple branching random walk is established in certain asymmetric cases, extending a previous result of Grill.  相似文献   
96.
Due to the limitation of computational resources, traditional statistical methods are no longer applicable to large data sets. Subsampling is a popular method which can significantly reduce computational burden. This paper considers a subsampling strategy based on the least absolute relative error in the multiplicative model for massive data. In addition, we employ the random weighting and the least squares methods to handle the problem that the asymptotic covariance of the estimator is difficult to be estimated directly. Moreover, the comparison among the least absolute relative error, least absolute deviation and least squares under the optimal subsampling strategy are given in simulation studies and real examples.  相似文献   
97.
98.
99.
Measured and analytical data are unlikely to be equal due to measured noise, model inadequacies and structural damage, etc. It is necessary to update the physical parameters of analytical models for proper simulation and design studies. Starting from simulated measured modal data such as natural frequencies and their corresponding mode shapes, this study presents the equations to update the physical parameters of stiffness and mass matrices simultaneously for analytical modelling by minimizing a cost function in the satisfaction of the dynamic constraints of orthogonality requirement and eigenvalue function. The proposed equations are straightforwardly derived by Moore–Penrose inverse matrix without using any multipliers. The cost function is expressed by the sum of the quadratic forms of both the difference between analytical and updated mass, and stiffness matrices. The results are compared with the updated mass matrix to consider the orthogonality requirement only and the updated stiffness matrix to consider the eigenvalue function only, respectively. Also, they are compared with Wei’s method which updates the mass and stiffness matrices simultaneously. The validity of the proposed method is illustrated in an application to correct the mass and stiffness matrices due to section loss of some members in a simple truss structure.  相似文献   
100.
The numerical solution of nonlinear equation systems is often achieved by so-called quasi-Newton methods. They preserve the rapid local convergence of Newton’s method at a significantly reduced cost per step by successively approximating the system Jacobian though low-rank updates. We analyze two variants of the recently proposed adjoint Broyden update, which for the first time combines the classical least change property with heredity on affine systems. However, the new update does require, the evaluation of so-called adjoint vectors, namely products of the transposed Jacobian with certain dual direction vectors. The resulting quasi-Newton method is linear contravariant in the sense of Deuflhard (Newton methods for nonlinear equations. Springer, Heidelberg, 2006) and it is shown here to be locally and q-superlinearly convergent. Our numerical results on a range of test problems demonstrate that the new method usually outperforms Newton’s and Broyden’s method in terms of runtime and iterations count, respectively. Partially supported by the DFG Research Center Matheon “Mathematics for Key Technologies”, Berlin and the DFG grant WA 1607/2-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号