首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11592篇
  免费   18篇
  国内免费   44篇
化学   3648篇
晶体学   10篇
力学   95篇
综合类   7篇
数学   4272篇
物理学   3622篇
  2024年   1篇
  2023年   8篇
  2022年   5篇
  2021年   2篇
  2020年   38篇
  2019年   56篇
  2018年   78篇
  2017年   79篇
  2016年   73篇
  2015年   21篇
  2014年   39篇
  2013年   628篇
  2012年   371篇
  2011年   518篇
  2010年   430篇
  2009年   2807篇
  2008年   2192篇
  2007年   920篇
  2006年   425篇
  2005年   319篇
  2004年   316篇
  2003年   192篇
  2002年   121篇
  2001年   116篇
  2000年   118篇
  1999年   80篇
  1998年   177篇
  1997年   157篇
  1996年   54篇
  1995年   243篇
  1994年   205篇
  1993年   182篇
  1992年   244篇
  1991年   213篇
  1990年   71篇
  1989年   66篇
  1988年   39篇
  1987年   1篇
  1986年   6篇
  1985年   19篇
  1984年   10篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
11.
In this paper, assuming a certain set-theoretic hypothesis, a positive answer is given to a question of H. Kraljevi, namely it is shown that there exists a Lebesgue measurable subsetA of the real line such that the set {c R: A + cA contains an interval} is nonmeasurable. Here the setA + cA = {a + ca: a, a A}. Two other results about sets of the formA + cA are presented.  相似文献   
12.
IfK is a field of characteristic 0 then the following is shown. Iff, g, h: M n (K) K are non-constant solutions of the Binet—Pexider functional equation
  相似文献   
13.
The purpose of this paper is to solve the following Pythagorean functional equation:(e p(x,y) ) 2 ) = q(x,y) 2 + r(x, y) 2, where each ofp(x,y), q(x, y) andr(x, y) is a real-valued unknown harmonic function of the real variablesx, y on the wholexy-planeR 2.The result is as follows.  相似文献   
14.
We solve the functional equation
  相似文献   
15.
LetC m be a compound quadrature formula, i.e.C m is obtained by dividing the interval of integration [a, b] intom subintervals of equal length, and applying the same quadrature formulaQ n to every subinterval. LetR m be the corresponding error functional. Iff (r) > 0 impliesR m [f] > 0 (orR m [f] < 0),=" then=" we=" say=">C m is positive definite (or negative definite, respectively) of orderr. This is the case for most of the well-known quadrature formulas. The assumption thatf (r) > 0 may be weakened to the requirement that all divided differences of orderr off are non-negative. Thenf is calledr-convex. Now letC m be positive definite or negative definite of orderr, and letf be continuous andr-convex. We prove the following direct and inverse theorems for the errorR m [f], where , denotes the modulus of continuity of orderr:
  相似文献   
16.
Theorem.Let the sequences {e i (n) },i=1, 2, 3,n=0, 1, 2, ...be defined by where the e (0) s satisfy and where all square roots are taken positive. Then where the convergence is quadratic and monotone and where The discussions of convergence are entirely elementary. However, although the determination of the limits can be made in an elementary way, an acquaintance with elliptic objects is desirable for real understanding.  相似文献   
17.
Applying Bittner's operational calculus we present a method to give approximate solutions of linear partial differential equations of first order
  相似文献   
18.
An exact formula for the various measure dimensions of attractors associated with contracting similitudes is given. An example is constructed showing that for more general affine maps the various measure dimensions are not always equal.Communicated by Michael F. Barnsley.  相似文献   
19.
We consider some self-affine fractal functions previously studied by Barnsleyet al. The graphs of these functions are invariant under certain affine scalings, and we extend their definition to allow the use of nonlinear scalings. The Hölder exponent,h, for these fractal functions is calculated and we show that there is a larger Hölder exponent,h , defined at almost every point (with respect to Lebesgue measure). For a class of such functions defined using linear affinities these exponents are related to the box dimensionD B of the graph byh2–D Bh .Communicated by Michael F. Barnsley.  相似文献   
20.
One of the most far-reaching qualities of an orthogonal system is the presence of an explicit product formula. It can be utilized to establish a convolution structure and hence is essential for the harmonic analysis of the corresponding orthogonal expansion. As yet a convolution structure for Fourier-Bessel series is unknown, maybe in view of the unpractical nature of the corresponding expanding functions called Fourier-Bessel functions. It is shown in this paper that for the half-integral values of the parameter ,n=0, 1, 2,, the Fourier-Bessel functions possess a product formula, the kernel of which splits up into two different parts. While the first part is still the well-known kernel of Sonine's product formula of Bessel functions, the second part is new and reflects the boundary constraints of the Fourier-Bessel differential equation. It is given, essentially, as a finite sum over triple products of Bessel polynomials. The representation is explicit up to coefficients which are calculated here for the first two nontrivial cases and . As a consequence, a positive convolution structure is established for . The method of proof is based on solving a hyperbolic initial boundary value problem.Communicated by Tom H. Koornwinder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号