首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   1篇
力学   3篇
数学   1篇
物理学   14篇
  2021年   2篇
  2019年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  1994年   1篇
  1985年   2篇
排序方式: 共有19条查询结果,搜索用时 312 毫秒
11.
针对两相环路热虹吸管中出现的间歇沸腾不稳定现象,分别以R134a、水和无水乙醇作为工质,通过流场可视化实验观测,探究了间歇沸腾出现的条件及其对环路传热特性的影响。实验结果表明,在中等充液率和中等加热热流密度条件下更容易发生间歇沸腾现象;流型的周期性变化引起环路内部压力和温度波动,同时会增加环路的均温性;流型变化和波动特性因工质不同而有所差别,水作为工质时,波动周期更长,流型变化及压力波动更复杂。  相似文献   
12.
A two-phase closed thermosyphon (TPCT) is a device for heat transmission. It consists of an evacuated-close tube filled with a certain amount of working fluid. Fluids with nanoparticles (particles smaller than 100 nm) suspended in them are called nanofluids that they have a great potential in heat transfer enhancement. In the present study, we combined two mentioned techniques for heat transfer enhancement. Nanofluids of aqueous Al2O3 nanoparticles suspensions were prepared in various volume concentration of 1–3% and used in a TPCT as working media. Experimental results showed that for different input powers, the efficiency of the TPCT increases up to 14.7% when Al2O3/water nanofluid was used instead of pure water. Temperature distributions on TPCT confirm these results too.  相似文献   
13.
P R Dastidar  A Kakodkar 《Pramana》1985,24(1-2):211-226
This article reviews the engineering development and safety aspects that are relevant to the nuclear power programme being pursued in the country. Some of the important aspects have been discussed in detail bringing out the current status and also the directions for further work.  相似文献   
14.
Hereby, a comparative study of thermal and thermodynamic properties of nanofluids based on multiwalled carbon nanotubes (MWCNTs) and water is described. The first nanofluid includes pristine MWCNT while the second nanofluid prepared by MWCNT decorated with silver. To achieve the covalent functionalization, morphology of MWCNT-Ag was studied by transmission electron microscopy. Subsequently, the value of the entropy generation and thermal performance of nanofluids (MWCNT/water and MWCNT-Ag/water) were inspected in a two-phased closed thermosyphon (TPCT). The results suggested as the concentration and input power increased, the thermal resistance decreased. Also in different concentrations, the thermal efficiency of nanofluids obeyed the sequence: MWCNT-Ag (1 wt%) > MWCNT-Ag (0.5 wt%) > MWCNT (1 wt%) > MWCNT (0.5 wt%) > water. A variation of the vacuum pressure was also studied in the synthesized nanofluids as compared with pure water. The results were shown a lower pressure drop of MWCNT-Ag/water than MWCNT/water and the water. Also it was found that the higher thermal performance is produced using higher extent of covalent functional groups (with higher thermal conductivity). MWCNT-Ag/water can be an appropriate substitution for the water in the thermal equipment due to the intensive thermal efficiency and/or low thermal resistance compared with pure water.   相似文献   
15.
This article presents a performance evaluation of an adsorption cooling system using activated carbon–methanol as the working pair. The desorption process was enhanced by a sonic-wave generator attached to the center of the side of the adsorber. The results show that the sonic-wave activation reduced the cycle time of the heating–condensation process and improved the system performance in terms of coefficient of performance, specific cooling power, and volumetric capacity power, of which the highest achieved for this system were 0.619, 229.15 W/kg, and 17.61 cm3/W, respectively.  相似文献   
16.
17.
Efficient and economical utilization of industrial waste heat would result in reduced energy use and thereby contribute to reduction of greenhouse gas emissions to the atmosphere. Two-phase thermosyphon technology has demonstrated the potential capability for waste heat recovery, but it has not been yet utilized in large-scale industrial applications. As a part of an industrial project, various types of thermosyphon heat pipes have been designed and tested for extraction of waste heat and process control in aluminum industry. This article presents the heat and mass transfer model, developed to provide a fast and accurate simulation tool for industrial application of thermosyphon heat pipe technology for waste heat utilization. The mathematical model considers the energy, momentum, and mass transfer equations, in their one-dimensional form, to predict output parameters of the thermosyphon and enable parametric and sensitivity analysis. The mathematical model structure is set up in a way that the least numerical cost and time is spent while the model accuracy is kept at acceptable level for the defined application. To provide experimental data for validation of the simulation model, the proposed thermosyphon was tested experimentally using a test set-up instrumented for this purpose. The simulation results are found to be in good agreement with the experimental data. The developed model and code are viable to be used as a simple and fast tool for modeling, design, and optimization of the thermosyphon as an element in a heat recovery module.  相似文献   
18.
In this article, the effect of applying an electric field on the performance of a two-phase closed thermosyphon is investigated experimentally. A CuO/water nanofluid is used as the working fluid in the present investigation; 40% of the evaporator volume is filled with the working fluid during the tests. An electric field in various voltages ranging from 5 to 20 kV is applied to the system. Also, the input power supplied to the evaporator varies between 60 to 120 W. The thermal efficiency and the thermal resistance of the two-phase closed thermosyphon are evaluated in various strengths of electric field and different volume fractions. It is found that using the nanofluid and applying an electric field could increase the thermal efficiency by up to 30% as compared with the case in which the working media is pure water and no electric field is applied. To illustrate the effect of the electric field on the heat transfer enhancement, the augmentation Nusselt number, defined as the ratio of the Nusselt numbers after and before applying the electric field, is discussed. The results show that utilizing an electric field is more advantageous when the input power applied to the system is lower.  相似文献   
19.
Viscoelastic fluids represent a major challenge both from an engineering and from a mathematical point of view. Recently, we have shown that viscoelasticity induces chaos in closed‐loop thermosyphons even when we consider binary fluids, this is, when we consider a solute in the fluid, as water and antifreezes, for example. In this work, we consider a linear friction law, and we show that in this case with the addition of a solute to the fluid we can prove, under some conditions, chaotic asymptotic behavior for suitable geometry of the circuit and heat flux or ambient temperature functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号