首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5972篇
  免费   531篇
  国内免费   418篇
化学   1015篇
晶体学   59篇
力学   3485篇
综合类   75篇
数学   872篇
物理学   1415篇
  2024年   5篇
  2023年   33篇
  2022年   85篇
  2021年   232篇
  2020年   170篇
  2019年   103篇
  2018年   128篇
  2017年   161篇
  2016年   217篇
  2015年   167篇
  2014年   214篇
  2013年   371篇
  2012年   213篇
  2011年   280篇
  2010年   245篇
  2009年   294篇
  2008年   310篇
  2007年   360篇
  2006年   361篇
  2005年   314篇
  2004年   303篇
  2003年   274篇
  2002年   204篇
  2001年   215篇
  2000年   234篇
  1999年   193篇
  1998年   159篇
  1997年   151篇
  1996年   136篇
  1995年   116篇
  1994年   88篇
  1993年   92篇
  1992年   83篇
  1991年   79篇
  1990年   51篇
  1989年   41篇
  1988年   45篇
  1987年   46篇
  1986年   33篇
  1985年   23篇
  1984年   23篇
  1983年   12篇
  1982年   24篇
  1981年   18篇
  1980年   2篇
  1979年   5篇
  1977年   3篇
  1973年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有6921条查询结果,搜索用时 15 毫秒
101.
In this article we studied the evolution of thermomechanical properties of a polyester‐urethane coating during degradation under different degradation conditions, i.e., aerobic and anaerobic conditions with and without dry/wet cycling during degradation. Dynamic mechanical and thermal analyses show that under aerobic conditions the coatings become stiffer and more brittle in the glassy state. This stiffening is probably due to the increase in the amount of hydrogen bonding and the formation of oxidized groups which increase the polarity of the material and enhance the interactions of the polymer segments. However, oxidation reactions result in a considerable decrease in cross‐link density and stiffness in the rubbery state. Both changes, in the glassy and rubbery states, give rise to development of internal stresses. These stresses increase as the degradation process proceeds. Nevertheless, for samples exposed to anaerobic conditions, the stiffness remains constant in the glassy state and the cross‐link density slightly increases as a result of degradation. This reconfirms the dominance of the effect of oxidation reactions on the mechanical failure of the coatings. Oxygen permeation measurements show a more‐or‐less time‐independent diffusion coefficient and a gradual decrease in solubility of oxygen as a function of exposure time. This results in a slight decrease in oxygen permeation (mainly in the early stage of the degradation) as degradation proceeds. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 659–671  相似文献   
102.
HTPB复合底排药压缩屈服应力模型研究   总被引:2,自引:0,他引:2  
目前广泛应用于底排增程技术的 HTPB 复合底排药 (composite base bleed grain,CBBG) 是一种颗粒填充含能材料,战场环境中将承受冲击、温度等载荷作用. 为研究 HTPB CBBG 冲击压缩力学性能,进行了不同温度 (233$\sim$323 K) 和应变率 (1100$\sim$7900 s$^{-1}$) 下的分离式霍普金森压杆实验. 实验结果表明,各工况下,应力应变曲线均呈现屈服-$\!$-应变硬化特征,HTPB CBBG 保持高韧性. 提高应变率和降低温度均导致相同应变下的应力幅值上升,但温度较应变率对HTPB CBBG 冲击压缩力学性能的影响更为显著. 基于所研究温度范围高于 HTPB CBBG 玻璃化转变温度,通过将水平、垂直移位因子与温度的关系表示为 WLF 方程的形式,将时温等效原理引入协同模型,并计及内应力的应变率增强效应,提出了一种新的屈服应力模型.选取参考温度,利用水平、垂直移位因子-$\!$-温度曲线和屈服应力主曲线拟合模型参数.模型预测值与实验数据对比结果表明:该模型可准确表征 233$\sim$323 K 时 HTPB CBBG 屈服应力的双线性应变率相关性,明确了较低和较高应变率时,应变率效应分别主要由内应力和驱动力贡献.   相似文献   
103.
将Si衬底GaN基LED外延薄膜经晶圆键合、去硅衬底等工艺制作成垂直结构GaN基LED薄膜芯片,并对其进行不同温度的连续退火,通过高分辨X射线衍射(HRXRD)研究了连续退火过程中GaN薄膜芯片的应力变化。研究发现:垂直结构LED薄膜芯片在160~180℃下退火应力释放明显,200℃时应力释放充分,GaN的晶格常数接近标准值。继续升温应力不再发生明显变化,GaN薄膜的晶格常数只在标准晶格常数值附近波动。扫描电子显微镜给出的bonding层中Ag-In合金情况很好地解释了薄膜芯片应力的变化。  相似文献   
104.
We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle–Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving–Kirkwood–Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.  相似文献   
105.
Depression and anxiety disorders are widespread diseases, and they belong to the leading causes of disability and greatest burdens on healthcare systems worldwide. It is expected that the numbers will dramatically rise during the COVID-19 pandemic. Established medications are not sufficient to adequately treat depression and are not available for everyone. Plants from traditional medicine may be promising alternatives to treat depressive symptoms. The model organism Chaenorhabditis elegans was used to assess the stress reducing effects of methanol/dichlormethane extracts from plants used in traditional medicine. After initial screening for antioxidant activity, nine extracts were selected for in vivo testing in oxidative stress, heat stress, and osmotic stress assays. Additionally, anti-aging properties were evaluated in lifespan assay. The extracts from Acanthopanax senticosus, Campsis grandiflora, Centella asiatica, Corydalis yanhusuo, Dan Zhi, Houttuynia cordata, Psoralea corylifolia, Valeriana officinalis, and Withania somnifera showed antioxidant activity of more than 15 Trolox equivalents per mg extract. The extracts significantly lowered ROS in mutants, increased resistance to heat stress and osmotic stress, and the extended lifespan of the nematodes. The plant extracts tested showed promising results in increasing stress resistance in the nematode model. Further analyses are needed, in order to unravel underlying mechanisms and transfer results to humans.  相似文献   
106.
Polyphenols and omega-3 polyunsaturated fatty acids from fish oils, i.e., eicosapentaenoic and docosahexaenoic acids, are well-recognized nutraceuticals, and their single antioxidant and anti-inflammatory properties have been demonstrated in several studies found in the literature. It has been reported that the combination of these nutraceuticals can lead to three-fold increases in glutathione peroxidase activity, two-fold increases in plasma antioxidant capacity, decreases of 50–100% in lipid peroxidation, protein carbonylation, and urinary 8-isoprotanes, as well as 50–200% attenuation of common inflammation biomarkers, among other effects, as compared to their individual capacities. Therefore, the adequate combination of those bioactive food compounds and their single properties should offer a powerful tool for the design of successfully nutritional interventions for the prevention and palliation of a plethora of human metabolic diseases, frequently diet-induced, whose etiology and progression are characterized by redox homeostasis disturbances and a low-grade of chronic inflammation. However, the certain mechanisms behind their biological activities, in vivo interaction (both between them and other food compounds), and their optimal doses and consumption are not well-known yet. Therefore, we review here the recent evidence accumulated during the last decade about the cooperative action between polyphenols and fish oils against diet-related metabolic alterations, focusing on the mechanisms and pathways described and the effects reported. The final objective is to provide useful information for strategies for personalized nutrition based on these nutraceuticals.  相似文献   
107.
This review discusses the state of the art, challenges, and perspectives in recent applications of nitroaromatics and nitroheteroaromatics, which are redox-bio-activated drugs or leads, in Medicinal Chemistry. It deals mainly with the electrochemical approach toward the electron transfer-based molecular mechanisms of drug action, drug design, estimation and measurement of redox potentials, correlation of physicochemical and pharmacological data, and electrochemical studies of the main representatives of nitro-containing prodrugs, along with approaches to combat their toxicity issues, aiming at a better therapeutic profile. Electrochemical investigation plays essential roles, being strategic in the design and discovery of potential medicines.  相似文献   
108.
Silicone rubber samples with gradually changing pore sizes within the range of 70–610 μm are produced using an improved spacer method. The samples are scanned using an X‐ray computed tomography to evaluate their graded structure as compared to uniform rubber. A compressive test reveals that graded porous silicone rubber has characteristic stress–strain curves whose slope changes within a specific strain range depending on the porous structure. Analysis results of local strain based on a digital image correlation of the graded porous silicone rubber under compression demonstrate that the characteristic stress–strain properties are caused by shifts in the main deformation region in the graded structure. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1033–1042  相似文献   
109.
Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1(PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm2. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing fractional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mechanism for most cell rolling events through P-selectin.  相似文献   
110.
Based on the Modified Couple Stress Theory,a functionally graded micro-beam under electrostatic forces is studied.The FGM micro-beam is made of two materials and material properties vary continuously along the beam thickness according to a power-law.Dynamic and static pull-in voltages are obtained and it is shown that the static and dynamic pull-in voltages for some materials cannot be obtained using classic theories and components of couple stress must be taken into account.In addition,it is shown that the values of pull-in voltages depend on the variation through the thickness of the volume fractions of the two constituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号