首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   29篇
  国内免费   17篇
化学   52篇
晶体学   4篇
力学   40篇
数学   1篇
物理学   70篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   13篇
  2014年   10篇
  2013年   41篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
51.
实验中纳米压痕被广泛用于测量单晶或多晶石墨烯的力学性质,而分子动力学模拟中研究者们更多地使用单轴拉伸来测量石墨烯的力学性质.两种测量方法对于多晶石墨烯弹性模量和破坏强度的预测是否存在差异?多晶石墨烯的力学性质是否依赖于其晶粒大小?对于固定晶粒大小的多晶石墨烯,拓扑结构的不同是否影响其力学性质?围绕以上问题,通过对比纳米压痕和单轴拉伸两种方法的分子动力学模拟,研究了多晶石墨烯弹性模量和破坏强度对晶粒尺寸、拓扑结构和测量方法的依赖性.  相似文献   
52.
采用脉冲激光沉积技术制备出无氢钨掺杂非晶态类金刚石膜.膜中的钨含量与靶材中的钨含量保持稳定的线性关系,显示了脉冲激光沉积在难熔金属掺杂技术方面的亮点.由于碳-钨结构的形成和表面粗糙度影响,膜层的干摩擦系数随着钨含量的增加显现出先减后增的趋势,钨含量为9.67 at.%时达到最低值0.091.钨含量的增大降低了类金刚石膜纳米硬度和杨氏模量,但最佳的膜层耐磨性参数并非表现在硬度最大(52.2 GPa)的纯类金刚石膜中,而是出现在低掺杂含量(6.28 at.%)的类金刚石膜中.研究为脉冲激光沉积技术制备低摩擦、高硬度无氢钨掺杂类金刚石膜的应用提供了技术实践.  相似文献   
53.
Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well‐defined structures of polycaprolactone (PCL) and PCL‐ carbon nanotube (PCL‐CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied. Raman spectroscopy is used to characterise the functionalized CNTs and its interactions with PCL matrix. Mechanical properties of the composites are characterised using nanoindentation. Maximum peak load, elastic modulus and hardness increases with increasing CNT content. Differential scanning calorimetry (DSC) studies reveal the thermal and crystalline behaviour of PCL and its CNT composites. Biodegradation studies are performed in Pseudomonas Lipase enzymatic media, showing its specificity and effect on degradation rate. Cell imaging and viability studies of H9c2 cells from rat origin on the scaffolds are performed using fluorescence imaging and MTT assay, respectively. PCL and its CNT composites are able to show cell proliferation and have the potential to be used in cardiac tissue engineering.

  相似文献   

54.
Mechanical properties of pyrolysed wood: a nanoindentation study   总被引:1,自引:0,他引:1  
The present work focuses on changes of mechanical properties in pyrolysed spruce wood as a function of temperature up to 2400°C. Nanoindentation tests are used for the determination of mechanical properties at the scale of single wood cell walls. Hardness, indentation modulus and elasto-plastic/brittle behaviour of the carbonaceous residues are derived as function of pyrolysis temperature. Hardness values increase continuously by more than one order of magnitude to 4.5?GPa at 700°C. The indentation modulus shows complex changes with a minimum of 5?GPa around 400°C and a maximum of 40?GPa around 1000°C. The deformation induced by the indenter is largely visco-plastic in native wood, but it is almost purely elastic in the carbonaceous residue, with particular low values of the indentation ductility index around 700°C. A low density and a strongly cross-linked carbon structure may explain the mechanical behaviour at these intermediate temperatures. A final decrease of the modulus and a slight decrease of ductility for temperatures above 2000°C can be attributed to a continuous structural transition of the material towards graphite-like stacking of carbon sheets and to preferred carbon orientation along the wood cell axis.  相似文献   
55.
K.S. Ng  A.H.W. Ngan 《哲学杂志》2013,93(33):3013-3026
The deformation of micron-sized single-crystals is jumpy and stochastic, and this may pose potential formability and reliability problems if components for future micro-machines are to be made from small metal volumes. In this work, micron-sized bi-crystal pillars were fabricated by focussed ion-beam milling from grain-boundary regions in coarse-grained polycrystalline aluminium. Each bi-crystal pillar contained a grain boundary intersecting its top surface, and was subjected to compression using a flat-ended nanoindenter tip. Their deformation was found to have smaller strain bursts, fewer periods of strain hardening at elastic-like rates, as well as greater work-hardening rate and flow stress, than single-crystal pillars of similar sizes. Transmission electron microscopy revealed severe dislocation accumulation in the deformed bi-crystal pillars, whereas the residual dislocation density remained low in single-crystal micro-pillars of similar dimensions after deformation to comparable strains. The results suggest that a grain boundary inside a micro-specimen can trap dislocations inside the specimen, leading to a significant rise in the strain-hardening rate as well as to smoother deformation.  相似文献   
56.
M.F. Wong 《哲学杂志》2013,93(26):3105-3128
The deformation behavior of [001]T- and [011]T-cut single crystal solid solution of Pb(Zn1/3Nb2/3)O3–6% PbTiO3 (PZN–6%PT) in both unpoled and poled states has been investigated by nanoindentation. Nanoindentation experiments reveal that material pile-up and local damage around the indentation impressions are observed at ultra-low loads. These pile-ups and local damage cause a pop-in event (i.e. a sudden increase in displacement at an approximately constant load) in the nanoindentation load–displacement curve (Ph curve). Detailed studies of the relationships between indentation load (P), displacement (h) and harmonic contact stiffness (S) suggest that there is a surface layer, possibly due to crystal fabrication processes, which possesses different mechanical properties from the interior. The thickness of this surface layer is estimated to be approximately 300 nm. Furthermore, it is found that [011]T-cut crystal is stiffer than [001]T-cut crystal. On the other hand, both [001]T- and [011]T-cut crystals in unpoled state possess lower contact stiffness than poled crystals. This finding suggests that poling improved the mechanical property of the crystal. In summary, poled [001]T-cut crystals have an elastic modulus of (107 ± 6) GPa and a hardness of (5.1 ± 0.4) GPa. In contrast, the modulus for [011]T-cut crystals is not constant but increases with indentation depth.  相似文献   
57.
Gerolf Ziegenhain 《哲学杂志》2013,93(26):2225-2238
We investigate the dependence of the hardness of materials on their elastic stiffness. This is possible by constructing a series of model potentials of Morse type; starting with modelling natural Cu, the model potentials exhibit an increased elastic modulus, while keeping all other potential parameters (lattice constant, bond energy) unchanged. Using molecular-dynamics simulation, we perform nanoindentation experiments on these model crystals. We find that the crystal hardness scales with the elastic stiffness. Also the load drop, which is experienced when plasticity sets in, increases in proportion to the elastic stiffness, while the yield point, i.e. the indentation at which plasticity sets in, is independent of the elastic stiffness.  相似文献   
58.
S. Neumeier  F. Pyczak  M. Göken 《哲学杂志》2013,93(33):4187-4199
The effect of rhenium and ruthenium on the hardness of the γ′ precipitates and the γ matrix in nickel-base superalloys was investigated using a nanoindenting atomic force microscope. The partitioning behaviour of the alloying elements and the lattice misfit between the γ and γ′ phase were determined in fully homogenised samples to explain the alloying effects. Rhenium strongly strengthens γ as it predominantly partitions to γ and has a strong solid solution-hardening effect. Ruthenium strengthens both γ and γ′ due to a more homogeneous partitioning behaviour. Ruthenium was found to cause less partitioning of rhenium to γ. This results in a stronger increase of the γ′ hardness. The change in the nanoindentation-derived hardness of both phases could be mainly attributed to the solid solution strengthening of Re and Ru.  相似文献   
59.
60.
《Composite Interfaces》2013,20(8):603-609
The objective of this paper is to provide a systematic test for fabrication or evaluation of a bilayer film structure between Cr and Al in micro/nanoelectronic manufacturing. The Cr/Al bilayer film is fabricated by using the magnetron sputtering. To understand the basic mechanical properties of the Cr/Al bilayer films, the elastic modulus and the hardness of the sample are investigated by using a nanoindenter test. The test can show the changing trend of the Cr/Al sample structure. To investigate the integrating characteristics of the sample in progress, the effect of the thermal cycling loading and no-thermal cycling loading on the integrating force of the Cr/Al samples is tested by using nanoscratch. The interfacial binding force in the films can be obtained for understanding the integrating characteristics. It builds a basis for future work on progress investigation of physical property of Cr/Al bilayer film structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号