首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   29篇
  国内免费   17篇
化学   52篇
晶体学   4篇
力学   40篇
数学   1篇
物理学   70篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   13篇
  2014年   10篇
  2013年   41篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
排序方式: 共有167条查询结果,搜索用时 46 毫秒
31.
<正>In the present work,a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal.The substrate indenter system is modeled using hybrid interatomic potentials including the many-body potential embedded atom method(EAM),and two-body morse potential.To simulate the indentation process,a spherical indenter(diameter = 80 A,1 A=0.1 nm) is chosen.The results show that the mechanical behaviour of a monolithic Ni is not affected by crystalline orientation.To elucidate the effect of a heterogeneous interface, three bilayer interface systems are constructed,namely Ni(100)/Cu(111),Ni(110)/Cu(111),and Ni(111)/Cu(111).The simulations along these systems clearly describe that mechanical behaviour directly depends on the lattice mismatch. The interface with the smaller mismatch between the specified crystal planes is proved to be harder and vice versa.To describe the relationship between film thickness and interface effect,we choose various values of film thickness ranging from 20 A to 50 A to perform the nanoindentation experiment.It is observed that the interface is significant only for the relatively small thickness of film and the separation between interface and the indenter tip.It is shown that with the increase in film thickness,the mechanical behaviour of the film shifts more toward that of monolithic material.  相似文献   
32.
The first anion with four polymerizable groups has been synthesized and used to produce durable, crosslinked polyelectrolyte (PE) coatings in a single step. Sodium tetrakis(4‐vinylphenyl)borate (NaBSty4) was produced by the reaction of BCl3 and the Grignard of 4‐bromostyrene. The full series of borates NaBPhxSty4?x, x = 1?3, were also synthesized analogously by reaction of the styryl‐Grignard and PhBCl2, Ph2BCl, or Ph3B. Anion exchange of the borates with tributyl 4‐vinylbenzylphosphonium chloride gave a family of organic salts developed for applications in photopolymerized coatings. The percent UV cure of the polymer films was determined by infrared spectroscopy and this relative level of curing was corroborated by differential scanning calorimetry analysis. The degree of crosslinking imparted to the polymer films by the different monomers has resulted in varied mechanical properties, which were probed by diamond tip scratch tests and nanoindentation. These clearly demonstrated that as the number of polymerizable groups increased, the film hardness increased correspondingly. The final hardness of the films exceeds those of other related systems and identifies styryl borates as viable crosslinking additives in UV curable technologies, especially in the production of durable PE films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
33.
Nanoindentation of cellulose diacetate‐graft‐poly(lactide)s (CDA‐g‐PLLAs) synthesized by ring opening graft copolymerization of L ‐lactide in bulk onto the residual hydroxyl positions on CDA were conducted to investigate the effect of the molecular composition and thermal aging on mechanical properties and creep behavior. Continuous stiffness measurement (CSM) technique was used to obtained hardness and elastic modulus. These material properties were expressed as a mean value from 100 to 300 nm depths and an unloading value at final indentation depth. The hardness and elastic modulus in all CDA‐g‐PLLAs were higher than those in pure CDA, indicating that the introduction of PLLA increases the hardness and elastic modulus. With an increase of crystallinity by thermal aging, the hardness and elastic modulus were increased in both CDA‐g‐PLLA and PLLA. The creep test performed by CSM showed that the creep strain of CDA was decreased by the grafting of PLLA. Thermal aging decreased the creep strain of CDA‐g‐PLLA and PLLA. With an increase of holding time, hardness was decreased, whereas elastic modulus was kept almost constant. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1114–1121, 2007  相似文献   
34.
Intergrowth polymorphism refers to the existence of distinct structural domains within a single crystal of a compound. The phenomenon is exhibited by form II of the active pharmaceutical ingredient felodipine, and the associated microstructure is a significant feature of the compound’s structural identity. Employing the technique of nanoindentation on form II reveals a bimodal mechanical response on specific single‐crystal faces, demonstrating distinct properties for two polymorphic forms within the same crystal.  相似文献   
35.
Titania nanofillers were used to reinforce nanofibers in composite mats produced by electrospinning of poly(vinyl butyral) with two different concentrations of polymers. The titania nanoparticles and titania nanotubes were added into an acetic acid/ethanol solution in different contents of 3 and 1 wt%, respectively. The effect of the processing system on the morphology of the produced fibers was analyzed. The antimicrobial poly(vinyl butyral) composite fibers with titanium dioxide nanoparticles and titanium dioxide nanotubes were produced by single and multineedle electrospinning systems. This study reports fabrication of composite nanofibrous mats with significant mechanical and antimicrobial properties at a high production speed, which is promising for commercial applications (health care, photocatalysis, protective clothing, etc.). The reported result revealed an outstanding correlation between values of elastic modulus derived from nanoindentation and dynamic mechanical techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
36.
The viscoelastic behavior of poly(methyl methacrylate) (PMMA) homopolymer and poly(methyl methacrylate-co-methyl acrylate) random copolymers was characterized by dynamic mechanical analysis and nanoindentation. Differential scanning calorimetric results showed only one glass transition, indicating the random distribution of comonomers in the copolymers. The α relaxation temperature (Tα) and activation energy (Hα) decreased with increasing content of methyl acrylate monomers (CMA%). The β relaxation temperature (Tβ) also decreased whereas the activation energy (Hβ) showed only small variations compared with Hα. Moreover, the indention displacement and creep compliance strongly depended on CMA%. Two creep stages were found in the creep compliance curves.  相似文献   
37.
The composition of dental tissues and their interaction determines its mechanical properties. The mechanical properties and chemical composition of the teeth of extant reptiles are still poorly studied areas. As a preliminary study the fangs of four species of snakes and a human tooth were investigated through nanoindentation and Raman spectroscopy. The average elastic modulus values for the main body of the fangs ranged from 15.3 GPa to 24.6 GPa, and 19.1 GPa for the human dentine. Raman spectroscopy and principal component analysis (PCA) showed that snake fangs are similar in composition to human dentine, both of which comprised of hydroxyapatite and an organic matrix. The elastic modulus and hardness data were correlated to the Raman spectra using partial least squares regression (PLS). The spectral features which correlated with the elastic modulus would suggest that elastic modulus is dependent on the relative protein to mineral amounts in the tooth. The form of the phosphate and the relative levels of phosphate to organic components also appear to be governing factors for elastic modulus. The PLS of Raman spectra against the hardness gave very similar results. The small differences between snake fangs and human dentine appeared to be because of carbonate content, with higher levels of carbonate in the human tooth than the snake fangs. Snake fangs should be able to withstand large lateral forces. Human dentine aids in dissipating imposed loads. This similarity in the chemical composition of the snake fangs and human dentine supported the findings of the similarities in mechanical properties, which may be attributed to the similar functional demands of these biocomposites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
38.
陈健  辜萍  柳兆涛  赵建华 《实验力学》2006,21(3):307-314
电化学阳极氧化生成的氧化铝薄膜含有高度有序的纳米孔阵列,本文首先假设氧化铝薄膜基体(无孔部分)为各向同性,结合其周期性孔结构特点和均匀化理论,可以得到氧化铝基体和薄膜弹性性质之间的关系。然后利用单轴拉伸结合电子散斑干涉(ESPI)的方法得到薄膜面内的杨氏模量为63.4GPa,并根据均匀化方法得到的基体与薄膜弹性性质的关系进一步推出薄膜横观各向同性的其它弹性参数,如基体杨氏模量等。为证明结果的可靠性,利用推出的弹性参数建立三维有限元模型,模拟纳米压痕实验,得到的加卸载曲线与实验曲线相吻合。  相似文献   
39.
The photochemical behaviour of a nanofilled epoxy resin has been studied. It has been shown that the filler content increases at the surface with irradiation time. Qualitative stiffness and adhesion measurements compare the surface properties of the filled and unfilled samples upon ageing. Depth profiling has been achieved by AFM nanoindentation and micro-FTIR. These two techniques allowed comparing stiffness and photooxidation of the aged samples. Both techniques showed an influence of nanofillers on thickness profiles. The relationship between the oxidation process and its consequences on the physical properties is explained taking into account oxygen permeability and light diffusion. Additionally, it has been shown that, whatever the content (5-10 wt%), the nature (silica or different organo-modified montmorillonites) or the shape of the filler (spherical or lamellar), the photoproducts were formed in comparable proportions and at similar rates as in the pristine matrix.  相似文献   
40.
无铅化和微型化已经成为电子封装的发展趋势,温度对无铅焊点的可靠性产生了不可忽视的影响。本文对Sn96.5Ag3Cu0.5无铅焊料进行回流处理,采用纳米压入法研究其在实际工况下的高温力学性能。结果表明,温度对焊料试样的力学性能影响显著。随着温度的升高,弹性模量和硬度逐渐降低,焊料发生软化;较高温度下的蠕变应力指数较小,焊料的蠕变抗力降低,其相应的蠕变激活能为76kJ/mol。由此可知,随温度的升高,焊料的蠕变机制由位错攀移逐渐转变为晶界滑移。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号