首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2573篇
  免费   300篇
  国内免费   173篇
化学   665篇
晶体学   7篇
力学   461篇
综合类   31篇
数学   816篇
物理学   1066篇
  2024年   2篇
  2023年   36篇
  2022年   48篇
  2021年   55篇
  2020年   97篇
  2019年   74篇
  2018年   80篇
  2017年   100篇
  2016年   99篇
  2015年   66篇
  2014年   138篇
  2013年   161篇
  2012年   132篇
  2011年   148篇
  2010年   150篇
  2009年   164篇
  2008年   193篇
  2007年   151篇
  2006年   142篇
  2005年   168篇
  2004年   144篇
  2003年   129篇
  2002年   86篇
  2001年   81篇
  2000年   48篇
  1999年   43篇
  1998年   39篇
  1997年   39篇
  1996年   30篇
  1995年   21篇
  1994年   25篇
  1993年   15篇
  1992年   17篇
  1991年   19篇
  1990年   16篇
  1989年   8篇
  1988年   12篇
  1987年   9篇
  1986年   12篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1976年   2篇
  1971年   2篇
  1969年   1篇
排序方式: 共有3046条查询结果,搜索用时 203 毫秒
81.
An integrated finite element method (FEM) is proposed to simulate incompressible two‐phase flows with surface tension effects, and three different surface tension models are applied to the FEM to investigate spurious currents and temporal stability. A Q2Q1 element is adopted to solve the continuity and Navier–Stokes equations and a Q2‐iso‐Q1 to solve the level set equation. The integrated FEM solves pressure and velocity simultaneously in a strongly coupled manner; the level set function is reinitialized by adopting a direct approach using interfacial geometry information instead of solving a conventional hyperbolic‐type equation. In addition, a consistent continuum surface force (consistent CSF) model is utilized by employing the same basis function for both surface tension and pressure variables to damp out spurious currents and to estimate the accurate pressure distribution. The model is further represented as a semi‐implicit manner to improve temporal stability with an increased time step. In order to verify the accuracy and robustness of the code, the present method is applied to a few benchmark problems of the static bubble and rising bubble with large density and viscosity ratios. The Q2Q1‐integrated FEM coupled with the semi‐implicit consistent CSF demonstrates the significantly reduced spurious currents and improved temporal stability. The numerical results are in good qualitative and quantitative agreements with those of the existing studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
82.
Abstract

A new Zn(II) metal-organic framework (MOFs), [Zn(BTC)(HME)]·(DMAc)(H2O) (1, H3BTC =1,3,5-benzenetricarboxylic acid, HME?=?protonated melamine, DMAc?=?N,N-dimethylacetamide), has been synthesized under solvothermal conditions. In the structure of 1, the four-coordinate Zn(II) ions are connected by BTC3? ligands into a 3-D framework with (3)-connected utg-type topology. This MOF shows permanent porosity after lattice solvent removal with a calculated pore size distribution around 0.72?nm. With abundant N-donor sites and suitable pore size, the desolvated 1 (1a) was used as a drug carrier for the loading of anticancer drug 5-fluorouracil (5-Fu) molecules. Moderate 5-Fu loading capacity and long drug release time were observed for 1a. The computational simulation results reveal that strong H-bond interactions between the 5-Fu molecules and the nitrogen sites allow slow release of the drug 1a. In addition, the in vitro cytotoxicity of 1 and 5-Fu loaded 1a were also evaluated using MTT assays against human oral squamous cell carcinoma (SCC-251 and HSC-4).  相似文献   
83.
A 3D finite element model of the explosive welding process of three-layer plates with materials of steel-copper-copper is established. Based on the presented model, the bonding mechanism is simulated and analyzed, different detonation modes are also comparatively studied to indicate the driving force spread in few microseconds. The results show that the three layer plates bond together after many times of impact between the flyers and the base driven by detonation wave, which is damping rapidly at each impa...  相似文献   
84.
A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the “usual” manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg–Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg–Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics studies of cubic crystals. In order to consider a fully specified system, a typical sixth order polynomial phase field model is considered. Analytical solutions for the propagating interface and critical nucleus are found, accounting for the influence of the anisotropic gradient energy and elucidating the distribution of components of interface stresses. The orientation-dependence of the nonequilibrium interface energy is first suitably defined and explicitly determined analytically, and the associated width is also found. The developed formalism is applicable to melting/solidification and crystal-amorphous transformation and can be generalized for martensitic and diffusive phase transformations, twinning, fracture, and grain growth, for which interface energy depends on interface orientation of crystals from either side.  相似文献   
85.
The thermal evolution of the energies and free energies of a set of spherical and near-spherical nuclei spanning the whole periodic table are calculated in the subtracted finite-temperature Thomas–Fermi framework with the zero-range Skyrme-type KDE0 and the finite-range modified Seyler–Blanchard interaction. The calculated energies are subjected to a global fit in the spirit of the liquid-drop model. The extracted parameters in this model reflect the temperature dependence of the volume symmetry and surface symmetry coefficients of finite nuclei, in addition to that of the volume and surface energy coefficients. The temperature dependence of the surface symmetry energy is found to be very substantial whereas that of the volume symmetry energy turns out to be comparatively mild.  相似文献   
86.
A regular gradient-holonomic approach to studying the Lax type integrability of the Ablowitz–Ladik hierarchy of nonlinear Lax type integrable discrete dynamical systems in the vertex operator representation is presented. The relationship to the Lie-algebraic integrability scheme is analyzed and the connection with the τ-function representation is discussed.  相似文献   
87.
J. Christopher 《哲学杂志》2013,93(26):2992-3016
The flow and work-hardening behaviour of tempered martensitic P92 steel have been investigated using phenomenological constitutive model in the temperature range 300–873 K for the strain rates ranging from 3.16 × 10?5 to 1.26 × 10?3 s?1. The analysis indicated that the hybrid model reduced to Estrin–Mecking (E–M) one-internal-variable model at intermediate and high temperatures. Further, the analysis also indicated that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation glide in P92 steel. The flow behaviour of the steel was adequately described by the E–M approach for the range of temperatures and strain rates examined. Three distinct temperature regimes have been obtained for the variations in work-hardening parameters with respect to temperature and strain rate. Signatures of dynamic strain ageing in terms of the anomalous variations in work-hardening parameters at intermediate temperatures and the dominance of dynamic recovery at high temperatures have been observed. The evaluation of activation energy suggested that deformation is controlled by the dominance of cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures.  相似文献   
88.
This paper is a consequence for a paper of Lin et al. [S.W. Lin, Y.W. Wou, P. Julian, Note on minimax distribution free procedure for integrated inventory model with defective goods and stochastic lead time demand, Appl. Math. Model. 35 (2011) 2087–2093]. We simplified their complicated solution procedure and then presented a revision to patch their negligence for the boundary minimums. Numerical examples are provided to demonstrate our findings.  相似文献   
89.
A number of oxotitanium(IV) complexes of the type TiOL with bis‐unsymmetric dibasic tetradentate Schiff base (LH2) containing ONNO donor atoms have been synthesized. Mono‐Schiff base (OPD‐HNP) was prepared by the condensation of 1:3 molar ratio of 2‐hydroxy‐1‐naphthaldehyde (HNP) with o‐phenylenediamine (OPD). Dibasic unsymmetric tetradentate diamine Schiff bases were prepared by the reaction of OPD‐HNP with 2‐hydroxyacetophenone, 2‐hydroxypropeophenone, benzoylacetone, acetylacetone and ethylacetoacetate. Further, titanylacetylacetonate was reacted with these ligands to obtain their metal complexes. On the basis of analytical and physiochemical data, the formation of complexes as TiOL was suggested having square pyramidal geometry. Quantum mechanical approach also confirmed this geometry. The assessment of the synthesized ligands and their complexes showed that some behave as good inhibitors of mycelial growth against selected phytopathogic fungi but weak inhibitors against some selected bacteria. A few of them also showed antioxidant properties.  相似文献   
90.
可积和不可积模型可以描述自然科学中的诸多现象, 寻找高维非线性模型的严格解已成为可积系统的一个重要研究内容. 结合达布变换法和多线性分离变量法, 可以得到多个(2+1)维非线性模型包含任意函数的严格解, 通过选取不同的任意函数, 构造这些非线性模型新的相互激发模式. 进一步推广了形变映射理论, 建立了变系数 场和sine-Gordon以及双sine-Gordon场的形变映射关系, 从而得到高维不可积模型包含任意函数的新严格解. 对任意函数的不同选择, 构造了sine-Gordon和双sine-Gordon可积模型丰富的局域解和周期解, 如多solitoff解及其周期波推广、周期形变的蛇形孤波解以及变模的拟周期解等.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号