首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   4篇
化学   2篇
力学   31篇
物理学   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.  相似文献   
32.
A computational fluid dynamics study of the swimming efficiency of a two‐dimensional flapping hydrofoil at a Reynolds number of 1100 is presented. The model accounts fully for viscous effects that are particularly important when flow separation occurs. The model uses an arbitrary Lagrangian–Eulerian (ALE) method to track the moving boundaries of oscillatory and flapping bodies. A parametric analysis is presented of the variables that affect the motion of the hydrofoil as it moves through the flow along with flow visualizations in an attempt to quantify and qualify the effect that these variables have on the performance of the hydrofoil. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
33.
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re=100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and , the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short “vortex street” in front of the airfoil and the “vortex street” induces a “wind”; against this “wind” the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect. The project supported by the National Natural Science Foundation of China (19725210)  相似文献   
34.
一种扑翼运动的模型实验及流场测量方法   总被引:2,自引:2,他引:2  
俯旋、下拍、仰旋、上挥是一般昆虫运动的四个典型运动过程 ,本文通过研制三维和二维扑翼流场模拟装置以及相应的运动控制系统 ,实现了对昆虫扑翼飞行的上述过程的模拟。在测量方面 ,流场信息主要是通过自研制的 2D -DPIV(二维粒子速度成像仪 )来获得。该系统装备了高分辨率的高速CCD摄像机能够较为精细地动态量化流场 ,3维和 2维流场的动态流动显示以及量化测量都是通过它来实现。初步实验结果表明 ,模拟装置能成功地刻画昆虫翼的典型运动特征 ,2D -DPIV系统也能捕捉和反映强非定常特性的流场。本文还显示了实验中发现的一些有趣的现象 ,这些现象将作为我们进一步研究的重点  相似文献   
35.
Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 152–155, March–April, 2009.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号