首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6437篇
  免费   1119篇
  国内免费   447篇
化学   2435篇
晶体学   84篇
力学   1450篇
综合类   53篇
数学   239篇
物理学   3742篇
  2024年   10篇
  2023年   41篇
  2022年   116篇
  2021年   139篇
  2020年   168篇
  2019年   165篇
  2018年   137篇
  2017年   197篇
  2016年   247篇
  2015年   300篇
  2014年   292篇
  2013年   962篇
  2012年   375篇
  2011年   452篇
  2010年   312篇
  2009年   362篇
  2008年   337篇
  2007年   360篇
  2006年   318篇
  2005年   308篇
  2004年   297篇
  2003年   237篇
  2002年   217篇
  2001年   193篇
  2000年   153篇
  1999年   125篇
  1998年   158篇
  1997年   126篇
  1996年   109篇
  1995年   118篇
  1994年   94篇
  1993年   103篇
  1992年   82篇
  1991年   61篇
  1990年   44篇
  1989年   43篇
  1988年   54篇
  1987年   30篇
  1986年   31篇
  1985年   24篇
  1984年   21篇
  1983年   4篇
  1982年   16篇
  1981年   18篇
  1980年   5篇
  1979年   17篇
  1977年   3篇
  1976年   4篇
  1973年   4篇
  1972年   5篇
排序方式: 共有8003条查询结果,搜索用时 15 毫秒
971.
The phase transition of ScSb and YSb from the NaCl-type (B1) structure to the CsCl-type (B2) structure is investigated by the ab initio plane-wave pseudopotential density functional theory method. It is found that the pressures for transition from the B1 structure to the B2 structure obtained from the equal enthalpies are 38.3 and 32.1 GPa for ScSb and YSb, respectively. From the variations of elastic constants with pressure, we find that the B1 phase of ScSb and YSb compounds are unstable when applied pressures are larger than 46.3 and 64.2 GPa, respectively. Moreover, the detailed volume changes during phase transition are analyzed.  相似文献   
972.
973.
The structural phase transition and electronic properties at ambient (B 1-phase) and high pressure (B 2-phase) of heavy rare earth monoantimonides (RESb; RE?=?Ho, Er, and Tm) have been studied theoretically using the self-consistent tight binding linear muffin tin orbital method. These compounds show metallic behavior under ambient condition and undergo a structural phase transition to the B 2 phase at high pressure. We predict a structural phase transition from the B 1 to B 2 phase in the pressure range 30.0–35.0?GPa. Apart from this, the ground state properties, such as lattice parameter and bulk modulus are calculated and compared with the available theoretical and experimental results.  相似文献   
974.
975.
We show that, in the theory of extended thermodynamics, rarefied monatomic gases can be identified as a singular limit of rarefied polyatomic gases. Under naturally conditioned initial data we prove that the system of 14 field equations for polyatomic gases in the limit has the same solutions as those of the system of 13 field equations for monatomic gases where there exists no dynamic pressure. We study two illustrative examples in the process of the limit, that is, the linear waves and the shock waves in order to grasp the asymptotic behavior of the physical quantities, in particular, of the dynamic pressure.  相似文献   
976.
The structural properties and pressure-induced phase transitions of CrO2 have been investigated using the pseudopotential plane-wave method based on the density functional theory (DFT). The rutile-type (P42/mnm), CaCl2-type (Pnnm), pyrite-type (Pā3), and CaF2-type (Fm-3m) phases of CrO2 have been considered. The structural properties such as lattice parameters, bulk moduli and its pressure derivative are consistent with the available experimental data. The second-order phase-transition pressure of CrO2 from the rutile phase to CaCl2 phase is 10.9?GPa, which is in good agreement with the experimental result. The sequence of these phases is rutile-type?→?CaCl2-type?→?pyrite-type?→?CaF2-type with the phase-transition pressures 10.9, 23.9, and 144.5?GPa, respectively. The equation of state of different phases has also been presented. It is more difficult to compress with the increase of pressure for different phases of CrO2.  相似文献   
977.
ABSTRACT

Perovskite structured mixed metal fluorides containing manganese/sodium or potassium have been synthesized in pure form by a greener precipitation route and characterized by high-resolution powder X-ray diffraction and Raman spectroscopy techniques. While all the reflections in the powder X-ray diffraction pattern of potassium manganese fluoride could be indexed in cubic symmetry with a = 4.1889 Å, sodium manganese fluoride showed reflections at positions typical of orthorhombic symmetry (Pnma space group) with a = 5.751, b = 8.008, and c = 5.548 Å. Potassium manganese fluoride in powder form showed bands at 209, 291, 386, 558, 621, and 733 cm?1 in the Raman spectrum at room temperature. All these bands disappeared and second-order band at 1151 and 1298 cm?1 emerged when the powders were compacted under pressure ranging between 1 and 4 tons (uniaxial). A similar change was noticed for sodium manganese fluoride in which bands at 1099, 1149, 1203, and 1286 cm?1 were observed for the compacted samples. The response of the vibrational modes of these compounds to uniaxial pressure revealed the existence of large structural disorder in them. Additionally, the need for the extreme care to collect and interpret Raman data of polycrystalline samples of these systems has been illustrated through this study.  相似文献   
978.
Using the methods of statistical mechanics and applying the conditions of thermal equilibrium for an ensemble of interacting molecules, it is proved that there is no excess pressure, nor internal and surface stresses, in clusters and small particles that are not subjected to the action of external forces. With this premise taken into account the thermodynamics of spherical and faceted small particles is developed. In a particle-vapour system surrounded by a rigid impervious shell, Kelvin's and Thomson's formulae and Wulff's rule are derived. For a particle-melt system at a constant external pressure it is expected that the melting points of a particle and a bulk solid should be equal. It is noted that, if a particle is not subjected to the action of external fields or bodies, its molecules occupy their natural equilibrium positions, and it is from them that deformations and internal stresses should be counted off. These equilibrium positions differ from those occupied by the same molecules in a bulk solid, which is what usually gives rise to the illusions of the stressed state of a small particle and its deformation caused by the “uncompensated” surface forces.  相似文献   
979.
The multianvil apparatus is used to generate conditions up to about 3100K and 26GPa with sample volumes of 1-12 mm3. Because high pressures and temperatures are stable over long experimental run durations, this apparatus can be used to investigate phase equilibria, transformation kinetics, diffusion, electrical impedance and elastic properties at high temperatures and pressures. The control and characterisation of temperature, pressure, differential stress and oxygen fugacity, which are generally crucial in such studies, are discussed here with particular emphasis on the uncertainties involved.  相似文献   
980.
In this paper we analyze the warm-standby M/M/R machine repair problem with multiple imperfect coverage which involving the service pressure condition. When an operating machine (or warm standby) fails, it may be immediately detected, located, and replaced with a coverage probability c by a standby if one is available. We use a recursive method to develop the steady-state analytic solutions which are used to calculate various system performance measures. The total expected profit function per unit time is derived to determine the joint optimal values at the maximum profit. We first utilize the direct search method to measure the various characteristics of the profit function followed by Quasi-Newton method to search the optimal solutions. Furthermore, the particle swarm optimization (PSO) algorithm is implemented to find the optimal combinations of parameters in the pursuit of maximum profit. Finally, a comparative analysis of the Quasi-Newton method with the PSO algorithm has demonstrated that the PSO algorithm provides a powerful tool to perform the optimization problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号