首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   37篇
  国内免费   3篇
化学   269篇
力学   6篇
综合类   3篇
数学   9篇
物理学   44篇
  2023年   19篇
  2022年   13篇
  2021年   30篇
  2020年   31篇
  2019年   25篇
  2018年   11篇
  2017年   21篇
  2016年   25篇
  2015年   19篇
  2014年   21篇
  2013年   20篇
  2012年   17篇
  2011年   15篇
  2010年   16篇
  2009年   8篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1982年   1篇
排序方式: 共有331条查询结果,搜索用时 23 毫秒
11.
We synthesized biobased poly(2,5‐furandimethylene succinate‐co‐butylene succinate) [P(FS‐co‐BS)] copolymers by polycondensation of 2,5‐bis(hydroxymethyl)furan, 1,4‐butanediol, and succinic acid. These copolymers could be crosslinked to form network polymers by means of a reversible Diels–Alder reaction with bis‐maleimide. The thermal properties, mechanical properties, and healing abilities of the P(FS‐co‐BS)s and the network polymers were investigated. The mechanical properties of the network polymers depended on the comonomer composition of the P(FS‐co‐BS)s and the maleimide/furan ratio in the network polymers. Some of the copolymers exhibited healing ability at room temperature, and their healing efficiency was enhanced by solvent or heat. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 216–222  相似文献   
12.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
13.
14.
An ultra‐short peptide Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe (Z=carbobenzyloxy) was shown to act as a highly efficient and versatile low molecular weight gelator (LMWG) for a variety of aliphatic and aromatic solvents under sonication. Remarkably, this simple dipeptide is not only able to form coiled fibres but also demonstrates self‐healing and thermal chiroptical switching behaviour. The formation of coiled assemblies was found to be influenced by the nature of the solvent and the presence of an additive. By exploiting these properties it was possible to modulate the macroscopic and microscopic properties of the organogels of this ultra‐short peptide, allowing the formation of highly ordered single‐domain networks of helical fibres with dimeric or alternatively fibre‐bundle morphology. The organogels were characterized by using FTIR, SEM, NMR and circular dichroism (CD) spectroscopy. Interestingly, CD experiments showed that the organogels of Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe in aromatic solvents exhibit thermal chiroptical switching. This behaviour was hypothesized to stem from changes in the morphology of the gel accompanied by conformational transformation of the gelling agent. The fact that such a small peptide can demonstrate hierarchical assemblies and the possibility of controlling the self‐association is rather intriguing. The self‐healing ability, chiroptical switching and more importantly the formation of helical assemblies by Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe under sonication, make this dipeptide an interesting example of the self‐assembly ability of ultra‐short peptides.  相似文献   
15.
An amino‐acid‐based (11‐(4‐(pyrene‐1‐yl)butanamido)undecanoic acid) self‐repairing hydrogel is reported. The native hydrogel, as well as hybrid hydrogels, have been thoroughly characterized by using various microscopic techniques, including transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, X‐ray diffraction, and by using rheological experiments. The native hydrogel exhibited interesting fluorescence properties, as well as a self‐healing property. Interestingly, the self‐healing, thixotropy, and stiffness of the native hydrogel can be successfully modulated by incorporating carbon‐based nanomaterials, including graphene, pristine single‐walled carbon nanotubes (Pr‐SWCNTs), and both graphene and Pr‐SWCNTs, within the native gel system. The self‐recovery time of the gel was shortened by the inclusion of reduced graphene oxide (RGO), Pr‐SWCNTs, or both RGO and Pr‐SWCNTs. Moreover, hybrid gels that contained RGO and/or Pr‐SWCNTs exhibited interesting semiconducting behavior.  相似文献   
16.
Copolymers of N‐isopropylacrylamide (NIPAM) and dopamine methacrylate can establish a reversible, self‐healing 3D network in aprotic solvents based on hydrogen bonding. The reactivity and hydrogen bonding formation of catechol groups in copolymer chains are studied by UV–vis and 1H NMR spectroscopy, while reversibility from sol to gel and inverse as well as self‐healing properties are tested rheologically. The produced reversible organogel can self‐encapsulate physically interacting or chemically bonded solutes such as drugs due to thermosensitivity of the used copolymer. This system offers dual‐targeted and controlled drug delivery and release—by slowing down release kinetics by supramolecular bonding of the drug and by reducing diffusion rates due to modulus increase.

  相似文献   

17.
Polymer‐based crosslinked networks with intrinsic self‐repairing ability have emerged due to their built‐in ability to repair physical damages. Here, novel dual sulfide–disulfide crosslinked networks (s‐ssPxNs) are reported exhibiting rapid and room temperature self‐healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self‐healable networks utilizes a combination of well‐known crosslinking chemistry: photoinduced thiol‐ene click‐type radical addition, generating lightly sulfide‐crosslinked polysulfide‐based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s‐ssPxNs. The resulting s‐ssPxN networks show rapid self‐healing within 30 s to 30 min at room temperature, as well as self‐healing elasticity with reversible viscoelastic properties. These results, combined with tunable self‐healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials.

  相似文献   

18.
Datura metel L. is an important medicinal plant of Solanaceae family which has extensive pharmacological properties. The present investigation was aimed to identify the presence of phytoconstituents and assess in vitro antibacterial, anti-biofilm, anti-diabetic, anti-inflammatory, antioxidant, cytotoxicity, and wound healing efficacy of D. metel leaves extract. Among different solvent extracts, methanolic extract showed higher amount of phenolic (124.61 ± 0.68 mg GAE/g), alkaloid (88.77 ± 1.01 mg AE/g), flavonoids (42.24 ± 0.18 mg QE/g), and tannins contents (38.72 ± 0.51 mg GAE/g). The extract exhibited not only significantly (P < 0.05) different antibacterial activities against pathogens tested but also showed maximum biofilm inhibition of 94, 88, and 92% against B. subtilis, MRSA, and E. coli, respectively. Anti-diabetic assay depicted 22.55 ± 0.62–79.41 ± 1.13% and 24.31 ± 1.47–72.59 ± 0.22% of α-amylase and α-glucosidase inhibition abilities of methanolic extract, respectively at varied concentrations. The methanolic extract showed potential anti-inflammatory effect (P < 0.05) by showing 28.11 ± 0.13, 34.94 ± 1.11, 55.73 ± 0.42, 73.28 ± 0.72, and 92.62 ± 1.33% of inhibition of protein denaturation at different concentrations with an IC50 value of 52.45 µg/mL. The extract revealed significant (P < 0.05) rate of ABTS scavenging, DPPH degradation, and reducing power assay in a concentration dependent manner. The cytotoxicity assay was demonstrated on L929 mouse fibroblast cell line and found > 90% of cell viability in the presence of methanolic extract, thereby indicating its non-toxicity effect. Wound healing assay indicated that methanolic extract at 50 µg/mL closed 100% of wound gap after 24 h with high rate of migration and proliferation. Furthermore, GC–MS chromatogram revealed the presence of several components in methanolic extract, including neophytadiene, hexadecanoic acid, and hentriacontane as principal phytoconstituents. In conclusion, methanolic extract of D. metel leaves could be used as potent therapeutic agent not only for treating metabolic diseases but also superficial chronic diabetic wounds.  相似文献   
19.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   
20.
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号