首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
化学   11篇
力学   9篇
物理学   24篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有44条查询结果,搜索用时 859 毫秒
41.
Evaluations methods of global warming are presented by considering the direct warming effect of chemical compounds and of decomposed compounds, warming effect due to the formation of troposphere ozone, and the cooling effect due to the decomposition of stratosphere ozone. It is easy to take account the stabilization of global warming gases concentration in the atmosphere, as those methods can conduct the time variations analysis. The methods are named Total Warming Prediction Analysis (TWPA) and Composite Warming Potential (CWP). The evaluation of Mobile Air Conditioning refrigerant is presented as an example of application of our method.  相似文献   
42.
This paper investigates the effect of vapour super-heating on hydrocarbon refrigerant 600a (Isobutane), 290 (Propane) and 1270 (Propylene) condensation inside a brazed plate heat exchanger.Vapour super-heating increases heat transfer coefficient with respect to saturated vapour, whereas no effect was observed on pressure drop.The super-heated vapour condensation data shows the same trend vs. refrigerant mass flux as the saturated vapour condensation data, but with higher absolute values. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m−2 s−1 depending on refrigerant type. The super-heated vapour heat transfer coefficients are from 5% to 10% higher than those of saturated vapour under the same refrigerant mass flux.The experimental heat transfer coefficients have been compared against Webb (1998) model for forced convection condensation of super-heated vapour: the mean absolute percentage deviation between the experimental and calculated data is ±18.3%.HC-1270 shows super-heated vapour heat transfer coefficient 5% higher than HC-600a and 10-15% higher than HC-290 together with total pressure drops 20-25% lower than HC-290 and 50-66% lower than HC-600a under the same mass flux.  相似文献   
43.
This paper is a continuation of the author’s previous work. New experimental data on the occurrence of choked flow phenomenon and mass flow rate of HFC-134a inside short-tube orifices under choked flow condition are presented. Short-tube orifices diameters ranging from 0.406 mm to 0.686 mm with lengths ranging from 1 mm to 3 mm which can be applied to a miniature vapour-compression refrigeration system are examined. The experimental results indicated that the occurrence of choked flow phenomena inside short-tube orifices is different from that obtained from short-tube orifice diameters of greater than 1 mm, which are typically used in air-conditioner. The beginning of choked flow is dependent on the downstream pressure, degree of subcooling, and length-to-diameter ratio. Under choked flow condition, the mass flow rate is greatly varied with the short-tube orifice dimension, but it is slightly affected by the operating conditions. A correlation of mass flow rate through short-tube orifices is proposed in terms of the dimensionless parameters. The predicted results show good agreement with experimental data with a mean deviation of 4.69%.  相似文献   
44.
Two-phase flow regime visualizations of HFO-1234yf and R-134a in a 6.70 mm inner diameter glass straight tube have been simultaneous investigated by top and side views with a high speed high resolution camera. No major difference was observed between both refrigerants. HFO-1234yf flow regimes were satisfactorily predicted by the Wojtan et al. [1] flow pattern map. In addition, 819 pressure drop data points measured during two-phase flow of refrigerants HFO-1234yf, R-134a and R-410A in horizontal straight tubes are presented. The tube diameter (D) varies from 7.90 to 10.85 mm. The mass velocity ranges from 187 to 1702 kg m−2 s−1 and the saturation temperatures from 4.8 °C to 20.7 °C. The results are compared against 10 well-known two-phase frictional pressure drop prediction methods. For the entire database, the best accuracy is given by the method of Müller-Steinhagen and Heck [2] with around 90% of the data predicted within a ±30% error band. An analysis was carried out on the maximum pressure gradient and on the corresponding vapor quality. A statistical analysis for each flow regime was also carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号