首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2189篇
  免费   133篇
  国内免费   69篇
化学   191篇
晶体学   7篇
力学   902篇
综合类   12篇
数学   866篇
物理学   413篇
  2024年   2篇
  2023年   21篇
  2022年   21篇
  2021年   32篇
  2020年   54篇
  2019年   53篇
  2018年   56篇
  2017年   55篇
  2016年   90篇
  2015年   77篇
  2014年   128篇
  2013年   198篇
  2012年   81篇
  2011年   101篇
  2010年   80篇
  2009年   125篇
  2008年   116篇
  2007年   119篇
  2006年   111篇
  2005年   82篇
  2004年   103篇
  2003年   71篇
  2002年   73篇
  2001年   77篇
  2000年   55篇
  1999年   82篇
  1998年   50篇
  1997年   64篇
  1996年   39篇
  1995年   27篇
  1994年   28篇
  1993年   24篇
  1992年   20篇
  1991年   16篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有2391条查询结果,搜索用时 15 毫秒
71.
The governing equation of wave motion of viscoelastic SWCNTs (single-walled carbon nanotubes) with surface effect under magnetic field is formulated on the basis of the nonlocal strain gradient theory. Based on the formulated equation of wave motion, the closed-form dispersion relation between the wave frequency (or phase velocity) and the wave number is derived. It is found that the size-dependent effects on the phase velocity may be ignored at low wave numbers, however, is significant at high wave numbers. Phase velocity can increase by decreasing damping or increasing the intensity of magnetic field. The damping ratio considering surface effect is larger than that without considering surface effect. Damping ratio can increase by increasing damping, increasing wave number, or decreasing the intensity of magnetic field.  相似文献   
72.
In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.  相似文献   
73.
In this paper, we present a formulation of statistical mechanics of a thermodynamic system consisting of free particles and independent correlated pairs interacting via nonlocal potential in terms of the scattering properties. Some quantum statistical properties such as energy, heat capacity, second virial coefficient, virial pressure and quantum correction of kinetic energy are described analytically. The difference between the resolvents of the interacting and free Hamiltonians, represented as , that is associated with particle correlations is used for the evaluation of the properties. The statistical properties are related to correlated states, when making a pole expansion of the analytically continued momentum matrix element of . The present work illustrates these relations for a three-dimensional nonlocal separable potential of rank-two.  相似文献   
74.
We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and external potentials. Such systems lead to the study of nonlocal interaction equations on subsets ? of ? d endowed with a Riemannian metric g. We obtain conditions, relating the interaction potential and the geometry, which imply existence, uniqueness and stability of solutions. We study the equations in the setting of gradient flows in the space of probability measures on ? endowed with Riemannian 2-Wasserstein metric.  相似文献   
75.
In this article, boundary characteristic orthogonal polynomials have been implemented in the Rayleigh–Ritz method to investigate free vibration of non-uniform Euler–Bernoulli nanobeams based on nonlocal elasticity theory. Non-uniform cross section of nanobeams has been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinate. Detailed analysis has been reported for all the possible cases of such variations. The objective of the present study is to analyze the effects of nonlocal parameter, boundary condition, length-to-diameter ratio and non-uniform parameter on the frequency parameters. It is found that clamped nanobeams are having highest frequency parameters than other types of boundary conditions for a particular set of parameters. It is also observed that frequency parameters decrease with increase in scaling effect parameter. First four deflection shapes of non-uniform nanobeams have also been incorporated. In this analysis, some of the new results in terms of boundary conditions have also been included.  相似文献   
76.
J.D. Clayton  J. Knap 《哲学杂志》2015,95(24):2661-2696
A phase field theory for coupled twinning and fracture in single crystal domains is developed. Distinct order parameters denote twinned and fractured domains, finite strains are addressed and elastic nonlinearity is included via a neo-Hookean strain energy potential. The governing equations and boundary conditions are derived; an incremental energy minimization approach is advocated for prediction of equilibrium microstructural morphologies under quasi-static loading protocols. Aspects of the theory are analysed in detail for a material element undergoing simple shear deformation. Exact analytical and/or one-dimensional numerical solutions are obtained in dimensionless form for stress states, stability criteria and order parameter profiles at localized fractures or twinning zones. For sufficient applied strain, the relative likelihood of localized twinning vs. localized fracture is found to depend only on the ratio of twin boundary surface energy to fracture surface energy. Predicted criteria for shear stress-driven fracture or twinning are often found to be in closer agreement with test data for several types of real crystals than those based on the concept of theoretical strength.  相似文献   
77.
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.  相似文献   
78.
A one-dimensional stress-based elasticity model with limited strain extensibility is developed in this paper, based on thermodynamics arguments. Such nonlinear elastic models can be used to model certain rubber-like and biological materials with limiting chain extensibility. The derived constitutive function is a non-smooth piecewise expression, which can be regularized for numerical or physical considerations. This non-smooth constitutive expression is derived from a Gibbs potential. A three-dimensional extension of this stress-based model is also proposed in the paper. Some simple structural examples are investigated for a bar composed of this non-smooth elastic body. A homogeneous bar composed of this new class of nonlinear elastic material that is loaded is studied for different tension states, namely for concentrated or distributed axial loading. It is shown that the displacement limit extensibility can be observed at the structural scale, with finite or infinite axial load parameters.  相似文献   
79.
A general implicit solution for determining volume-preserving transformations in the n-dimensional Euclidean space is obtained in terms of a set of 2n generating functions in mixed coordinates. For n=2, the proposed representation corresponds to the classical definition of a potential stream function in a canonical transformation. For n=3, the given solution defines a more general class of isochoric transformations, when compared to existing methods based on multiple potentials. Illustrative examples are discussed both in rectangular and in cylindrical coordinates for applications in mechanical problems of incompressible continua. Solving exactly the incompressibility constraint, the proposed representation method is suitable for determining three-dimensional isochoric perturbations to be used in bifurcation theory. Applications in non-linear elasticity are envisaged for determining the occurrence of complex instability patterns for soft elastic materials.  相似文献   
80.
In this study, a Lagrange multiplier technique is developed to solve problems of coupled mechanics and is applied to the case of a Newtonian fluid coupled to a quasi-static hyperelastic solid. Based on theoretical developments in [57], an additional Lagrange multiplier is used to weakly impose displacement/velocity continuity as well as equal, but opposite, force. Through this approach, both mesh conformity and kinematic variable interpolation may be selected independently within each mechanical body, allowing for the selection of grid size and interpolation most appropriate for the underlying physics. In addition, the transfer of mechanical energy in the coupled system is proven to be conserved. The fidelity of the technique for coupled fluid–solid mechanics is demonstrated through a series of numerical experiments which examine the construction of the Lagrange multiplier space, stability of the scheme, and show optimal convergence rates. The benefits of non-conformity in multi-physics problems is also highlighted. Finally, the method is applied to a simplified elliptical model of the cardiac left ventricle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号