首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15042篇
  免费   1273篇
  国内免费   483篇
化学   2704篇
晶体学   66篇
力学   6922篇
综合类   88篇
数学   3072篇
物理学   3946篇
  2024年   9篇
  2023年   141篇
  2022年   206篇
  2021年   297篇
  2020年   392篇
  2019年   300篇
  2018年   335篇
  2017年   359篇
  2016年   401篇
  2015年   434篇
  2014年   560篇
  2013年   1076篇
  2012年   752篇
  2011年   959篇
  2010年   681篇
  2009年   881篇
  2008年   854篇
  2007年   833篇
  2006年   750篇
  2005年   646篇
  2004年   676篇
  2003年   571篇
  2002年   512篇
  2001年   384篇
  2000年   395篇
  1999年   342篇
  1998年   347篇
  1997年   332篇
  1996年   312篇
  1995年   278篇
  1994年   260篇
  1993年   220篇
  1992年   228篇
  1991年   175篇
  1990年   142篇
  1989年   118篇
  1988年   118篇
  1987年   76篇
  1986年   72篇
  1985年   89篇
  1984年   81篇
  1983年   39篇
  1982年   82篇
  1981年   27篇
  1980年   12篇
  1979年   7篇
  1978年   8篇
  1976年   5篇
  1971年   6篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
111.
Among the salient features of shear-driven plane Couette flow is the constancy of the total shear stress (viscous and turbulent) across the flow. This constancy gives rise to a quasi-homogenous core region, which makes the bulk of the flow substantially different from pressure-driven Poiseuille flow. The present second-moment closure study addresses the conflicting hypotheses relating to turbulent Couette flow. The inclusion of a new wall-proximity function in the wall-reflection part of the pressure-strain model seems mandatory, and the greement with recent experimental and direct numerical simulation (DNS) results is encouraging. Analysis of model computations in the range 750 ≤ Re ≤ 35,000 and comparisons with low-Re DNS data suggest that plane Couette flow exhibits a local-equilibrium core region, in which anisotropic, homogeneous turbulence prevails. However, the associated variation of the mean velocity in the core, as obtained by the model, conflicts with the intuitively appealing assumption of homogeneous mean shear. The constancy of the velocity gradient exhibited by the DNS therefore signals a deficiency in the modeled transport equation for the energy dissipation rate.  相似文献   
112.
This paper deals with the non-stationary incompressible Navier--Stokes equations for two-dimensional flows expressed in terms of the velocity and pressure and of the vorticity and streamfunction. The equivalence of the two formulations is demonstrated, both formally and rigorously, by virtue of a condition of compatibility between the boundary and initial values of the normal component of velocity. This condition is shown to be the only compatibility condition necessary to allow for solutions of a minimal regularity, namely H1 for the velocity, as in most current numerical schemes relying on spatial discretizations of local type.  相似文献   
113.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
114.
A new approach to the calculation of the high pressures characterizing the flow field in front of a piston undergoing severe acceleration over the short term is presented. In contrast with previous approaches where the computational domain is altered but which stop short of transforming velocities, here the problem is solved in an accelerating non-Euclidean co-ordinate system where the piston is stationary. The method is applied to a study of the problem of premature sabot separation. Through use of Harten's second-order-accurate TVD scheme, flow simulations are performed for both 1D and 3D axisymmetric geometries. The simple 1D model gives pressure profiles surprisingly close to those of the more physical 3D model.  相似文献   
115.
An efficient numerical method is presented for solving the equations of motion for viscous fluids. The equations are discretized on the basis of unstructured finite element meshes and then solved by direct iteration. Advective fluxes are temporarily fixed at each iteration to provide a linearized set of coupled equations which are then also solved by iteration using a fully implicit algebraic multigrid (AMG) scheme. A rapid convergence to machine accuracy is achieved that is almost mesh-independent. The scaling of computing time with mesh size is therefore close to the optimum.  相似文献   
116.
For classical solutions of the incompressible Navier-Stokes equations (NSE) the energybalance between kinetic energy, work done by external forces, and viscous dissipation holds rigorously true. It is shown in this paper that standard Galerkin approximations violate energy balance in the case of plane Couette flow, whereas Poiseuille flow turns out to be energy consistent at any cutoff. The main reason for this discrepancy is seen in the different boundary conditions between the stationary linear shear flow and its disturbances. In our analysis, essentially, we introduce an auxiliary external force field which enforces the finite dimensional Galerkin approximation to fulfil the NSE. It is exemplarily demonstrated how the energy discrepancy decreases when the number of disturbed modes is increased which couple to the stationary shear flow.  相似文献   
117.
The disarrangement of a perturbed lattice of vortices was studied numerically. The basic state is an exponentially decaying, exact solution of the Navier-Stokes equations. Square arrays of vortices with even numbers of vortex cells along each side were perturbed and their evolution was investigated. Whether the energy in the perturbation grows somewhat before it decays or decays monotonically depends on the initial strength of the vortices of the basic state, the extent of lateral confinement and the structure of the perturbation. The critical condition for temporally local instability, i.e. the critical amplitude of the basic state that must be exceeded to allow energy transfer from the basic state to the perturbation, is discussed. In the strongly confined case of a square lattice of four vortices the appearance of enchancement of global rotation is the result of energy transfer from the basic state to a temporally local unstable mode. Energy is transferred from the basic state to larger-scaled structures (inverse cascade) only if the scales of the larger structures are inherently contained in the initial structure of the perturbation. The initial structure of the double array of vortices is not maintained except for a very special form of perturbation. The facts that large scales decay more slowly than small scales and that, when non-linearities are sufficiently strong, energy is transferred from one scale to another explain the differences in the disarrangement process for different initial strengths of the vortices of the basic state. The stronger vortices, i.e. the vortices perturbed in a manner that increases their strength, tend to dominate the weaker vortices. The pairing and subsequent merging (or capture) of vortices of like sense into larger-scale vortices are described in terms of peaks in the evolution of the square root of the palinstrophy divided by the enstrophy.  相似文献   
118.
本文将文献[9]提出改进的通量分裂方法,应用于随时间变化的贴体网格中,建立了可用于求解非定常Euler方程的通量分裂方法.该方法是以连续的特征值分离为基础,它具有方法简单,便于推广使用的特点.同时克服了Steger-Warming通量分裂方法存在的问题.对通量分裂后的Euler方程.利用MUSCL型迎风差分建立了具有二阶精度的有限体积方程.文中以NACA64A—10翼型为例,对其在跨音速流场中进行沉浮、俯仰及带有振动控制面引起的非定常气动载荷进行了计算.部分计算结果与相应的实验结果进行了比较,吻合良好  相似文献   
119.
120.
Relative permeability functions for immiscible displacements in porous media show a wide range of profiles. Although, this behavior is well known, its impact on the stability of the displacement process is unexplored. Our analysis clearly demonstrates for the first time that the viscous instability characteristics of two-phase flows are governed not only by their end point values, but are strongly dependent on the actual profile of relative permeability functions. Linear stability analysis predicts the capacity of the flow to develop large scale fingers which can result in substantial bypassing of the resident fluid. It is observed that relative permeability functions attributed to drainage processes yield a more unstable displacement as compared to functions related to imbibition processes. Moreover, instability is observed to increase for those relative permeability functions which result from increased wettability of the wetting fluid. High accuracy numerical simulations show agreement with these predictions and demonstrate how large amplitude viscous fingers result in significant bypassing for certain relative permeability functions. In the nonlinear regime, the finger amplitude grows at a rate ∝ t1/2 initially, drops to t1/4 at a later time and finally grows ∝ t. The basic mechanisms of finger interaction, however, are not substantially influenced by relative permeability functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号