首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2884篇
  免费   391篇
  国内免费   180篇
化学   2238篇
晶体学   25篇
力学   338篇
综合类   55篇
数学   319篇
物理学   480篇
  2024年   10篇
  2023年   60篇
  2022年   119篇
  2021年   167篇
  2020年   230篇
  2019年   158篇
  2018年   128篇
  2017年   135篇
  2016年   187篇
  2015年   152篇
  2014年   173篇
  2013年   211篇
  2012年   145篇
  2011年   154篇
  2010年   124篇
  2009年   125篇
  2008年   130篇
  2007年   162篇
  2006年   137篇
  2005年   126篇
  2004年   122篇
  2003年   86篇
  2002年   55篇
  2001年   44篇
  2000年   40篇
  1999年   37篇
  1998年   44篇
  1997年   27篇
  1996年   33篇
  1995年   26篇
  1994年   10篇
  1993年   10篇
  1992年   11篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   9篇
  1986年   25篇
  1985年   4篇
  1984年   9篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   7篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有3455条查询结果,搜索用时 15 毫秒
31.
In order to increase the biocompatibility and bioactivity of chitosan, hydroxyapatite had been in situ combined into chitosan scaffolds. The bioactivity of the composite scaffolds was studied by examining the apatite formed on the scaffolds by incubating in simulated body fluid and the activity of preosteoblasts cultured on them. The apatite layer was assessed using scanning electronic microscope (SEM), X-ray diffraction (XRD), Fourier-Transformed Infrared spectroscopy (FTIR) and weight measurement. Composite analysis showed that after incubation in simulated body fluid on both of the scaffolds carbonate hydroxyapatite was formed. With increasing nano-hydroxyapatite content in the composite, the quantity of the apatite formed on the scaffolds increased. Compared with pure chitosan, the composite with nano-hydroxyapatite could form apatite more readily during the biomimetic process, which suggests that the composite possessed better mineralization activity. Furthermore, preosteoblast cells cultured on the apatite-coated scaffolds showed different behavior. On the apatite-coated composite scaffolds cells presented better proliferation than on apatite-coated chitosan scaffolds. In addition, alkaline phosphatase activities of cells cultured on the scaffolds in conditioned medium were assessed. The cells on composite scaffolds showed a higher alkaline phosphatase activity which suggested a higher differentiation level. The results indicated that the addition of nano-hydroxyapatite improved the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds. On the other hand, that is to say composition of substrates could affect the apatite formation on them, and pre-loaded hydroxyapatite can enhance the apatite-coating. It will also be significant in preparation of apatite-coating polymer scaffolds for bone tissue engineering.  相似文献   
32.
A family of alkaline earth organosulfonate coordination solids is reported. In contrast to more typical crystal engineering approaches, these solids are sustained by the assembly of building blocks that are coordinatively adaptable rather than rigid in their bonding preferences. The ligand, 4,5-dihydroxybenzene-1,3-disulfonate, L, progressively evolves from a 0D, 1D, 2D, to a 3D microporous network with the Group II cations Mg(2+), Ca(2+), Sr(2+), and Ba(2+), (compounds 1-4), respectively. This trend in dimensionality can be explained by considering factors such as hard-soft acid-base principles and cation radii, a rationalization which follows salient crystal engineering principles. The selective gas sorption properties of the microporous 3D network [Ba(L)(H(2)O)].H(2)O, 4, with different gaseous guests are also presented.  相似文献   
33.
Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.  相似文献   
34.
Stereochemically labile copper and zinc complexes with the N,N'-dimethylethylenediamine ligand (dmeda) have been shown to be promising precursors for the total spontaneous resolution of chiral covalent networks. (N,N')-[Cu(NO3)2(dmeda)]infinity crystallises as a conglomerate and yields either enantiopure (R,R)-1 or enantiopure (S,S)-1. A mixed-valence copper(I/II) complex, [{Cu(II)Br2(dmeda)}3(Cu(I)Br)2]infinity (2), which crystallises as a pair of interpenetrating chiral (10,3)-a nets, is formed from CuBr, CuBr2 and dmeda. One net contains ligands with solely (R,R) configuration and exhibits helices with (P) configuration while the other has solely (S,S)-dmeda ligands and gives rise to a net in which the helices have (M) configuration. The whole crystalline arrangement is racemic, because the interpenetrating chiral nets are of opposite handedness. With zinc chloride (R,S)-[ZnCl(dmeda)2]2[ZnCl4] (3) is obtained, which is a network structure, although not chiral. Total spontaneous resolution of stereochemically labile metal complexes formed from achiral or racemic building blocks is suggested as a viable route for the preparation of covalent chiral networks. Once the absolute structure of the compound has been determined by X-ray crystallography, a quantitative determination of the enantiomeric excess of the bulk product can be undertaken by means of solid-state CD spectroscopy.  相似文献   
35.
"Energy chemistry" was approved as one of the chemistry majors for undergraduate by the Ministry of Education in 2015. Based on the ideas and ways of emerging engineering education, this paper hereby proposed some of constructive suggestions on the training objectives, graduation requirements, curriculum system, teaching contents, teaching staff and conditions for development of "energy chemistry" major.  相似文献   
36.
Based on the development prospect of cosmetics industry, the advantage of light industry characteristic and the foundation of applied chemistry in Jiangnan University, a systematic upgrading of applied chemistry was carried out through "emerging engineering education (3E)" project "upgrade and practice of chemistry-related majors of local and/or trade university responding to the social developments" supported by the Ministry of Education. On the basis of investigation and analysis, the orientation and training goal of applied chemistry were updated first, and then the curriculum system was determined and the curriculum construction is strengthened, so as to achieve more distinctive characteristics, more solid foundation and more comprehensive quality. In view of the new requirements of the 3E for talent training, some practices have been formed in the aspects of multi-disciplinary integration, multi-angle coordination and close integration to industry. Contributing the development of cosmetics industry and seizing the commanding point of science and technology from the perspective of talent training, will play a unique role in human social progress.  相似文献   
37.
Controlling chemical reactivity has been the central theme in chemistry. Herein, we review the recent progress on the development of genetically encoded protein coupling reactions and their potential applications. The chemical reactivity is encoded in the protein sequences. The information is read out by folding and molecular recognition between two reactive components and subsequently translated into chemical bonding via autocatalysis. It has emerged as a unique way to tune the chemical reactivity and is regarded as one type of information‐coded reactions. Not only has it received many applications such as protein topology engineering, bioconjugation, biomaterials and synthetic biology, but also its principle may be extended beyond protein chemistry to enable new modes of supramolecular interactions that promote chemical bonding and that are simultaneously reinforced by covalent bonds.  相似文献   
38.
Scientific research training is an essential part of undergraduate learning, which plays an important role in improving students' knowledge utilization and scientific literacy. Taking the participation process of "Energy conservation and emission reduction competition" as an example, this paper briefly introduces the undergraduate scientific research training of students majoring in polymer materials and engineering from their own perspective, and the way to combine the discipline and school characteristics to reflect the thinking of engineering students in scientific research and practical application.  相似文献   
39.
40.
Using a group of six neutral M(II)Cl(2)-containing coordination compounds as building blocks, the first systematic investigation of C-H...Cl hydrogen-bonding interactions was performed. Single-crystal X-ray structural analyses of four new compounds (pseudo-tetrahedral Co(II) and Zn(II); distorted trigonal bipyramidal Zn(II)) authenticate the metal coordination geometry. To provide a unified view of the presence of noncovalent interactions in this class of compounds, we have re-examined the packing diagram of two previously reported compounds (a distorted square-pyramidal Cu(II) complex and a trans-octahedral Co(II) complex). The organic ligands of our choice comprise bidentate/tridentate pyrazolylmethylpyridines and an unsymmetrical tridentate pyridylalkylamine. This systematic investigation has allowed us to demonstrate the existence of versatile C-H...Cl(2)M interactions and to report the successful application of such units as inorganic supramolecular synthons. Additional noncovalent interactions such as C-H...O and O-H...Cl hydrogen bonding and pi-pi stacking interactions have also been identified. Formation of novel supramolecular architectures has been revealed: 2D lamellar (p-cyclophane) and 3D lamellar, 3D "stitched staircase" (due to additional hydrogen-bonding interactions by water tetramers, with an average O-O bond length in the tetramer unit of 2.926 A, acting as "molecular clips" between staircases), 3D linked ladder, and single-stranded 1D helix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号