首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1594篇
  免费   154篇
  国内免费   213篇
化学   941篇
晶体学   30篇
力学   193篇
综合类   9篇
数学   60篇
物理学   728篇
  2024年   4篇
  2023年   39篇
  2022年   43篇
  2021年   68篇
  2020年   66篇
  2019年   51篇
  2018年   48篇
  2017年   56篇
  2016年   67篇
  2015年   52篇
  2014年   67篇
  2013年   97篇
  2012年   66篇
  2011年   99篇
  2010年   83篇
  2009年   129篇
  2008年   142篇
  2007年   123篇
  2006年   109篇
  2005年   93篇
  2004年   79篇
  2003年   48篇
  2002年   52篇
  2001年   35篇
  2000年   35篇
  1999年   30篇
  1998年   32篇
  1997年   21篇
  1996年   28篇
  1995年   15篇
  1994年   8篇
  1993年   11篇
  1992年   12篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1974年   2篇
排序方式: 共有1961条查询结果,搜索用时 15 毫秒
61.
Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.  相似文献   
62.
《Electroanalysis》2017,29(3):898-906
Platinum nanoparticles (NPs) modified with undecafluorohexylamine (UFHA) and octylamine were synthesized as a novel model cathode catalyst for fuel cells. The modified Pt NPs were well characterized by FTIR, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and transmission electron microscopy. These NPs supported on carbon black were applied as electrocatalysts for the oxygen reduction reaction. The UFHA‐modified Pt NP catalyst showed high electrocatalytic activity and durability compared to a commercial catalyst. Besides suppression of undesired oxide formation on the Pt surface, the affinity between the perfluorinated alkyl chains of UFHA and Nafion® improved the catalyst activity by creating a desirable proton conduction path. Additionally, UFHA modification improved durability by suppressing Pt dissolution and carbon corrosion because of restricted water accessibility. The β ‐oxide formation, which is responsible for Pt dissolution, was significantly attenuated by surface modification.  相似文献   
63.
This review discusses the latest advances in electrodeposition of nanostructured catalysts for electrochemical energy conversion: fuel cells, water splitting, and carbon dioxide electroreduction. The method excels at preparing efficient and durable nanostructured materials, such as nanoparticles, single atom clusters, hierarchical bifunctional combinations of hydroxides, selenides, phosphides, and so on. Yet, in most cases, chemical composition cannot be decoupled from catalyst morphology. This compromises the rational design of electrodeposition procedures because performance indicators depend on both morphology and surface chemistry. We expect electrodeposition will keep unraveling its potential as the preferred method for electrocatalyst synthesis once a deeper understanding of the electrochemical growth process is combined with complex chemistries to have control of the morphology and the surface composition of complex (bifunctional) electrocatalysts.  相似文献   
64.
Insoluble sludge is generated in the reprocessing of spent fuel. The sludge obtained from the dissolution of irradiated fuel from the “Joyo” experimental fast reactor was analyzed to evaluate its chemical form. The sludge was collected by the filtration of the dissolved fuel solution, and then washed in nitric acid. The yields of the sludge weight were less than 1% of the total fuel weight. The chemical composition of the sludge was analyzed after decomposition by alkaline fusion. Molybdenum, technetium, ruthenium, rhodium, and palladium were found to be the main constituent elements of the sludge. X-ray diffraction patterns of the sludge were attributable to Mo4Ru4RhPd, regardless of the experimental conditions. The concentrations of molybdenum and zirconium in the dissolved fast reactor fuel solutions were low, indicating that zirconium molybdate hydrate is produced in negligible amounts in the process.  相似文献   
65.
Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm−2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.  相似文献   
66.
Sulphonated polystyrene ethylene butylene polystyrene(SPSEBS)prepared with 35%sulphonation was found to be highly elastic and enlarged up to 300%-400%of its initial length.It absorbed over 110%of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride)(PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly(MEA)preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117(0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell(PEMFC)and direct methanol fuel cell(DMFC)application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.  相似文献   
67.
We have studied a hot-wall heating system to produce GdBa2Cu3Oy (GdBCO) films with large critical currents (Ic) at a high production rate by a pulsed-laser-deposition (PLD) method. GdBCO films fabricated at a production rate of 30 m/h under the optimized conditions, especially a distance of 95 mm between the target and the substrate (T–S), exhibited high critical current densities (Jc) of about 3 MA/cm2 and Ic over 300 A at a thickness of 1–2 μm. Furthermore, long GdBCO tapes prepared by repeated depositions at each tape-passing speed of 80 m/h showed uniform Ic distribution along the longitudinal direction, because the hot-wall system enabled to stabilize temperature within a few degrees at 800 °C. A 170 m long tape with Ic over 600 A was successfully fabricated at a production rate of 16 m/h using a laser power of 360 W.  相似文献   
68.
For the first time, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was prepared through a fast, easy and efficient method with the assistance of microwave irradiation, and the quaternized chitosan was also degraded via the microwave irradiation. A comparative study was performed by using the conventional heating method to prepare HTCC. The structure and property of the quaternized chitosan obtained by these two methods were characterized by GPC, XRD, FTIR, NMR, TG and elemental analysis. It was shown that quaternized chitosan was successfully prepared within 50 min via microwave irradiation method, while a much longer time of 6–7 h was needed with the conventional heating method. The substitutions both occurred on the C2 position of chitosan with the two different methods, and their HTCC products had weight average similar molecular weight (Mw), structure and thermal stability. The HTCC prepared by the microwave irradiation method had a little lower degree of substitution (DS) than those prepared via conventional heating with the same mole ratio (6:1) of the intermediate to chitosan. The degradation study showed that the Mw of HTCC decreased rapidly from 4.6 × 105 to 1.1 × 105 in 1 h under microwave irradiation, while it only decreased from 4.6 × 105 to 2.1 × 105in 1 h through conventional heating degradation. These results revealed that microwave irradiation is a more efficient and environment-friendly way to obtain the water-soluble chitosan derivatives and their degraded products.  相似文献   
69.
Concise and efficient three‐component domino [4+1+1] carbocyclization to highly substituted fluoren‐9‐one derivatives promoted by K2CO3 has been developed under microwave irradiation conditions. The direct bis‐cyanation and aryl amination residing in fluoren‐9‐one framework were achieved in a one‐pot operation. The reaction proceeds at fast rates and can be finished within 30 min, which makes workup convenient to give good to excellent chemical yields.  相似文献   
70.
An ecofriendly and efficient microwave-irradiated solvent-free benzoylation method was developed. The procedure for C-benzoylation used 50 mol% AlCl3 as a Lewis acid catalyst at 130 °C and was completed in 10 min. The isolated yield was between 71% and 100%. N-benzoylation was conducted in a catalyst-free environment at 130 °C in 10 min. The isolated yield was between 80% and 100%.

Additional information

ACKNOWLEDGMENT

Financial support from U.S. Department of Education Title III grant to Tennessee State University is acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号