首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2473篇
  免费   154篇
  国内免费   42篇
化学   36篇
晶体学   11篇
力学   1244篇
综合类   2篇
数学   814篇
物理学   562篇
  2024年   2篇
  2023年   23篇
  2022年   18篇
  2021年   40篇
  2020年   61篇
  2019年   64篇
  2018年   63篇
  2017年   63篇
  2016年   63篇
  2015年   76篇
  2014年   77篇
  2013年   209篇
  2012年   93篇
  2011年   143篇
  2010年   131篇
  2009年   158篇
  2008年   126篇
  2007年   132篇
  2006年   110篇
  2005年   121篇
  2004年   97篇
  2003年   97篇
  2002年   76篇
  2001年   59篇
  2000年   66篇
  1999年   60篇
  1998年   65篇
  1997年   42篇
  1996年   42篇
  1995年   30篇
  1994年   36篇
  1993年   46篇
  1992年   36篇
  1991年   38篇
  1990年   17篇
  1989年   23篇
  1988年   16篇
  1987年   9篇
  1986年   10篇
  1985年   8篇
  1984年   9篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
  1957年   1篇
排序方式: 共有2669条查询结果,搜索用时 109 毫秒
141.
This paper presents a Navier–Stokes solver for steady and unsteady turbulent flows on unstructured/hybrid grids, with triangular and quadrilateral elements, which was implemented to run on Graphics Processing Units (GPUs). The paper focuses on programming issues for efficiently porting the CPU code to the GPU, using the CUDA language. Compared with cell‐centered schemes, the use of a vertex‐centered finite volume scheme on unstructured grids increases the programming complexity since the number of nodes connected by edge to any other node might vary a lot. Thus, delicate GPU memory handling is absolutely necessary in order to maximize the speed‐up of the GPU implementation with respect to the Fortran code running on a single CPU core. The developed GPU‐enabled code is used to numerically study steady and unsteady flows around the supercritical airfoil OAT15A, by laying emphasis on the transonic buffet phenomenon. The computations were carried out on NVIDIA's Ge‐Force GTX 285 graphics cards and speed‐ups up to ~46 × (on a single GPU, with double precision arithmetic) are reported. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
142.
Existence of a family of locally invariant probability measures for large scale flows in enclosed temperate sea is proved. This model is extremely important for understanding the meso-scale phenomena in oceans. The techniques used are those developed by Albeverio and his collaborators.  相似文献   
143.
Since the (original) ghost fluid method (OGFM) was proposed by Fedkiw et al. in 1999 [5], a series of other GFM-based methods such as the gas–water version GFM (GWGFM), the modified GFM (MGFM) and the real GFM (RGFM) have been developed subsequently. Systematic analysis, however, has yet to be carried out for the various GFMs on their accuracies and conservation errors. In this paper, we develop a technique to rigorously analyze the accuracies and conservation errors of these different GFMs when applied to the multi-medium Riemann problem with a general equation of state (EOS). By analyzing and comparing the interfacial state provided by each GFM to the exact one of the original multi-medium Riemann problem, we show that the accuracy of interfacial treatment can achieve “third-order accuracy” in the sense of comparing to the exact solution of the original mutli-medium Riemann problem for the MGFM and the RGFM, while it is of at most “first-order accuracy” for the OGFM and the GWGFM when the interface approach is actually near in balance. Similar conclusions are also obtained in association with the local conservation errors. A special test method is exploited to validate these theoretical conclusions from the numerical viewpoint.  相似文献   
144.
The multigrid method is one of the most efficient techniques for convergence acceleration of iterative methods. In this method, a grid coarsening algorithm is required. Here, an agglomeration scheme is introduced, which is applicable in both cell‐center and cell‐vertex 2 and 3D discretizations. A new implicit formulation is presented, which results in better computation efficiency, when added to the multigrid scheme. A few simple procedures are also proposed and applied to provide even higher convergence acceleration. The Euler equations are solved on an unstructured grid around standard transonic configurations to validate the algorithm and to assess its superiority to conventional explicit agglomeration schemes. The scheme is applied to 2 and 3D test cases using both cell‐center and cell‐vertex discretizations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
145.
The lattice Boltzmann method (LBM) has established itself as an alternative approach to solve the fluid flow equations. In this work we combine LBM with the conventional finite volume method (FVM), and propose a non‐iterative hybrid method for the simulation of compressible flows. LBM is used to calculate the inter‐cell face fluxes and FVM is used to calculate the node parameters. The hybrid method is benchmarked for several one‐dimensional and two‐dimensional test cases. The results obtained by the hybrid method show a steeper and more accurate shock profile as compared with the results obtained by the widely used Godunov scheme or by a representative flux vector splitting scheme. Additional features of the proposed scheme are that it can be implemented on a non‐uniform grid, study of multi‐fluid problems is possible, and it is easily extendable to multi‐dimensions. These features have been demonstrated in this work. The proposed method is therefore robust and can possibly be applied to a variety of compressible flow situations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
146.
We develop locally normalized feature-detection methods to guide the adaptive mesh refinement (AMR) process for Cartesian grid systems to improve the resolution of vortical features in aerodynamic wakes. The methods include: the Q-criterion [1], the λ2 method [2], the λci method [3], and the λ+ method [4]. Specific attention is given to automate the feature identification process by applying a local normalization based upon the shear-strain rate so that they can be applied to a wide range of flow-fields without the need for user intervention. To validate the methods, we assess tagging efficiency and accuracy using a series of static vortex-dominated flow-fields, and use the methods to drive the AMR process for several theoretical and practical simulations. We demonstrate that the adaptive solutions provide comparable accuracy to solutions obtained on uniformly refined meshes at a fraction of the computational cost. Overall, the normalized feature detection methods are shown to be effective in driving the AMR process in an automated and efficient manner.  相似文献   
147.
An upwind finite element scheme for the incompressible viscous flow at a high Reynolds number was proposed by the fourth and fifth authors. The scheme has the potential to approximate the advection term in third-order accuracy. We apply it to a two-dimensional non-stationary analysis of airflows around an Automated Guided Vehicle (AGV), which starts with constant acceleration, runs at a constant speed and stops with constant deceleration. The results are at least qualitatively good and compatible with experimental ones.  相似文献   
148.
In this article, an improved smoothed particle hydrodynamics (SPH) method is proposed to simulate the filling process with two inlets. Improvements are achieved by deriving a corrected kernel gradient of SPH and a density re-initialisation. In addition, a new treatment of solid wall boundaries is presented. Thus, the improved SPH method has higher accuracy and better stability, and conserves both linear and angular momentums. The validity of the new boundary treatment is shown by simulating the spin-down problem. The bench tests are also presented to demonstrate the performance of the improved SPH method. Then the filling process with a single inlet is simulated to show the ability to capture complex-free surface of the proposed method. Finally, the filling process with two inlets is numerically investigated. The numerical results show that the filling patterns are affected significantly by Reynolds number, aspect ratio of the container and the location of the inlets.  相似文献   
149.
We present an experimental study of the Faraday instability in which we compare the behavior of a Newtonian fluid (water-glycerine mixture) with that of a semi-dilute non-Newtonian solution of high molecular weight polymer. We show that although the dispersion relation of surface waves, derived for a layer of inviscid fluid, remains valid in that particular non-Newtonian case, the behavior of the instability threshold with frequency strongly differs from the Newtonian case. We explain this effect as a result of a frequency-dependent viscosity. The linear stability analysis of the non-Newtonian case shows a perfect agreement with the experimental results both for the dispersion relation and for the reduction of the instability threshold. We discuss the use of the characteristics of the Faraday experiment as a measurement tool to determine frequency dependent properties of non-Newtonian fluids. Received 5 January 1999  相似文献   
150.
In this paper, an in‐depth study of SPH method, in its original weakly compressible version, is achieved on dedicated 2D and 3D free‐surface flow test cases. These rather critical prototype problems shall constitute suitable test cases to get through when building a free‐surface SPH model. The present work aims at investigating various numerical aspects of this method, often little mentioned in literature. In particular, a great care is paid to the dynamic part of the solution, which is critical to the local hydrodynamic load prediction. The role of numerical errors in the development of acoustic frequencies in the pressure signals is discussed, as well as the influence of the choice of the sound velocity. On the shown test problems, it is also evidenced that some numerical tools are crucial to ensure the robustness and accuracy of the standard SPH method. The convergence of our model is heuristically proved on these nonlinear prototype tests, showing at the same time the very satisfactory level of accuracy reached. Through these tests, some other numerical specificities of the SPH method are discussed, such as the self‐redistribution of the particles occurring during the Lagrangian evolution. A higher order model is also proposed, and its advantages and drawbacks are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号