首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2473篇
  免费   154篇
  国内免费   42篇
化学   36篇
晶体学   11篇
力学   1244篇
综合类   2篇
数学   814篇
物理学   562篇
  2024年   2篇
  2023年   23篇
  2022年   18篇
  2021年   40篇
  2020年   61篇
  2019年   64篇
  2018年   63篇
  2017年   63篇
  2016年   63篇
  2015年   76篇
  2014年   77篇
  2013年   209篇
  2012年   93篇
  2011年   143篇
  2010年   131篇
  2009年   158篇
  2008年   126篇
  2007年   132篇
  2006年   110篇
  2005年   121篇
  2004年   97篇
  2003年   97篇
  2002年   76篇
  2001年   59篇
  2000年   66篇
  1999年   60篇
  1998年   65篇
  1997年   42篇
  1996年   42篇
  1995年   30篇
  1994年   36篇
  1993年   46篇
  1992年   36篇
  1991年   38篇
  1990年   17篇
  1989年   23篇
  1988年   16篇
  1987年   9篇
  1986年   10篇
  1985年   8篇
  1984年   9篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
  1957年   1篇
排序方式: 共有2669条查询结果,搜索用时 156 毫秒
131.
A nonlinear stability method is developed for laminar two-fluid shear flows which undergo changes in the interface topology. The method is based on the nonlinear parabolized stability equations (PSE) and incorporates a scalar-based interface capturing (IC) scheme in order to track complex deformations of the fluid interface. In doing so, the formulation retains the flexibility and physical insight of instability-wave based methods, while providing hydrodynamic modeling capabilities similar to direct numerical calculations: the new formulation, referred to as the IC-PSE, can capture the nonlinear physical mechanisms responsible for generating large-scale, two-fluid structures, without incurring heavy computational costs. This approach is valid for spatially developing, laminar two-fluid shear flows which are convectively unstable, and can naturally account for the growth of finite amplitude interfacial waves, along with changes to the interfacial topology. We demonstrate the accuracy of the IC-PSE against direct Navier–Stokes calculations for two-fluid mixing layers with density and viscosity stratification. The comparisons show that the IC-PSE can predict the dynamics of the instability waves and capture the formation of Kelvin–Helmholtz vortex rolls and large scale liquid structures, at an order of magnitude less computational cost than direct calculations. The role of surface tension in the IC-PSE formulation is shown to be valid for flows in which Re/We ? 1, and the method accurately predicts the formation and non-linear evolution of flow structures in this limit. This is demonstrated for spatially developing mixing layers which lead to vortex roll-up and ligaments, prior to droplet formation. The pinch-off process itself is a high surface tension phenomenon and in not considered herein. The method also accurately captures the effect of interfacial waves on the mean flow, and the topology changes during the non-linear evolution of the two-fluid structures.  相似文献   
132.
We consider a model for the flow of a mixture of two viscous and incompressible fluids in a two or three dimensional channel-like domain. The model consists of the Navier-Stokes equations governing the fluid velocity coupled with a convective Cahn-Hilliard equation for the relative density of atoms of one of the fluids. We prove the instability of certain stationary solutions for such a system endowed with periodic boundary conditions on elongated domains (0,2π/α0)×(0,2π) or (0,2π/α0)×(0,2π)×(0,2π/β0) for a special class of periodic body forces, provided that α0 and β0 are small enough. As a consequence, we deduce a lower bound for the Hausdorff dimension of the global attractor.  相似文献   
133.
Particle settling in driven viscous films is a complex physical process involving different physical effects. A recent analysis by Cook (2008) [10] has identified a balance between hindered settling and shear-induced migration as the dominant large scale physics for particle/liquid separation. However, experimental data for this has been lacking. This paper presents new data including the role of particle size and liquid viscosity showing clear agreement with the theory. We discuss the role of timescales in the dynamics of the experiment and present results from a dynamic model.  相似文献   
134.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   
135.
This paper is concerned with the Cauchy problems of one-dimensional compressible Navier-Stokes equations with density-dependent viscosity coefcients.By assumingρ0∈L1(R),we will prove the existence of weak solutions to the Cauchy problems forθ0.This will improve results in Jiu and Xin’s paper(Kinet.Relat.Models,1(2):313–330(2008))in whichθ12is required.In addition,We will study the large time asymptotic behavior of such weak solutions.  相似文献   
136.
The authors construct a solution Ut(x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a skew-adjoint operator not necessarily bounded and a nonlinear part with low regularity, namely one-fold differentiability. Besides, the equivalence of capacities under the transformations of the Wiener space induced by the solutions is obtained.  相似文献   
137.
The authors study the Rayleigh-Taylor instability for two incompressible immis- cible fluids with or without surface tension, evolving with a free interface in the presence of a uniform gravitational field in Eulerian coordinates. To deal with the free surface, instead of using the transformation to Lagrangian coordinates, the perturbed equations in Eule- rian coordinates are transformed to an integral form and the two-fluid flow is formulated as a single-fluid flow in a fixed domain, thus offering an alternative approach to deal with the jump conditions at the free interface. First, the linearized problem around the steady state which describes a denser immiscible fluid lying above a light one with a free interface separating the two fluids, both fluids being in (unstable) equilibrium is analyzed. By a general method of studying a family of modes, the smooth (when restricted to each fluid domain) solutions to the linearized problem that grow exponentially fast in time in Sobolev spaces are constructed, thus leading to a global instability result for the linearized problem. Then, by using these pathological solutions, the global instability for the corresponding nonlinear problem in an appropriate sense is demonstrated.  相似文献   
138.
139.
140.
This paper presents the vortical and self-similar solutions for 2D compressible Euler equations using the separation method. These solutions complement Makino’s solutions in radial symmetry without rotation. The rotational solutions provide new information that furthers our understanding of ocean vortices and reference examples for numerical methods. In addition, the corresponding blowup, time-periodic or global existence conditions are classified through an analysis of the new Emden equation. A conjecture regarding rotational solutions in 3D is also made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号