首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
力学   18篇
数学   4篇
物理学   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
Blasius problem is the simplest nonlinear boundary-layer problem. We hope that any approach developed for this epitome can be extended to more difficult hydrodynamics problems. With this motivation we review the so called Töpfer transformation, which allows us to find a non-iterative numerical solution of the Blasius problem by solving a related initial value problem and applying a scaling transformation. The applicability of a non-iterative transformation method to the Blasius problem is a consequence of its partial invariance with respect to a scaling group. Several problems in boundary-layer theory lack this kind of invariance and cannot be solved by non-iterative transformation methods. To overcome this drawback, we can modify the problem under study by introducing a numerical parameter, and require the invariance of the modified problem with respect to an extended scaling group involving this parameter. Then we apply initial value methods to the most recent developments involving variants and extensions of the Blasius problem.  相似文献   
22.
We consider a problem which arises in the numerical solution of the compressible two-dimensional or axisymmetric boundary-layer equations. Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x, y) plane to a computational (ξ, η) plane in which the evolution of the flow is ‘slow’ in the time-like ξ direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently non-linear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which satisfies the continuity equation nearly to machine precision. As demonstration of the utility of the method, the boundary layers of three prototypical high-speed flows are investigated and compared: the flat plate, the hollow cylinder, and the cone. An important implication for classical linear stability theory is also briefly discussed.  相似文献   
23.
In a very recent paper by Aydin and Kaya (Transp. Porous Media (to appear), 2008) the combined effects of viscous dissipation and surface mass flux on the forced-convection boundary-layer flow was considered. However, as the present Note shows, the thermal boundary condition imposed at the outer edge of the boundary-layer by Aydin and Kaya is incompatible with the energy equation, and thus the results of their paper are in error.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号