首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   1篇
  国内免费   1篇
化学   19篇
晶体学   2篇
力学   15篇
数学   2篇
物理学   22篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
21.
Effect of patterning on thermal agglomeration of ultrathin silicon-on-insulator (SOI) layer has been studied. A square-shaped 12 nm thick SOI layer was patterned by lithography and by selective etching with a KOH solution. The structural change by ultrahigh vacuum annealing in a temperature range of 900–1100 °C was observed by atomic force microscopy. The agglomeration takes place preferentially from the pattern edges at a lower annealing temperature than that for the unpatterned layer, indicating enhanced diffusion of Si atoms at the edges. Additionally, the patterning causes formation of smaller islands than those for the unpatterned layer, reflecting that the patterning limits the amount of Si atoms supplied for the island formation.  相似文献   
22.
A theoretical model is developed to study the sedimentation characteristics of nanoscale colloidal suspensions (nanofluids). The influences of various deterministic and stochastic forcing parameters in the transport characteristics of the suspended nanoparticles are investigated by employing a Langevin formalism of particle transport. The role of collective particle interaction phenomena in the sedimentation of nanoparticles is analyzed by invoking the fundamental considerations of agglomeration-deagglomeration kinetics of the particulate phases. The model demonstrates the effect of particle volume fraction, particle size, and aggregate structure on the sedimentation velocity of the suspended nanoparticles. Predictions from the present model agree well with the experimental results reported in the literature.  相似文献   
23.
G. Dell'Agli  G. Mascolo   《Solid State Ionics》2003,160(3-4):363-371
Nanometric yttria (8 mol%)-stabilized zirconia powders were hydrothermally synthesized at 110 °C for 7 days in the presence of dilute (0.20 M) or concentrated (2.0 M) solutions of (KOH+K2CO3) mineralizer. Zirconia xerogel, crystalline Y(OH)3, crystalline Y2O3 and a xerogel of coprecipitated (Y–Zr) hydroxide were used as starting materials. Setting the content of yttria constant and equal to 8 mol%, three types of mixtures were tested. Zirconia xerogel in mixture with crystalline Y2O3, zirconia xerogel in mixture with crystalline Y(OH)3 and, finally, a xerogel of coprecipitated (Y–Zr) hydroxide were hydrothermally treated.The different characteristics of the resulting powders are discussed in terms of both the mineralizer concentration and the type of Y-based precursor used in the hydrothermal treatments, respectively.Weakly agglomerated cubic ZrO2 powders with primary particles bigger in size and without any preliminary treatment show better performances when they are directly sintered at 1500 °C.  相似文献   
24.
ABSTRACT

The influence of octaethylene glycol mono-n-hexadecyl ether (C16EO8) and sodium dodecyl sulphate (SDS) on the crystallization of calcium oxalate from 0.3 mol dm?3 sodium chloride solutions has been investigated. The critical micellar concentration (CMC) of C16EO8 in water and 0.3 mol dm?3 NaCl was determined by surface tension measurements (CMCH2O=CMCNaCl = 7.2.10?6 mol dm?3). The kinetics of precipitation of calcium oxalate was followed by Coulter counter, and solid phases were characterized by polarized microscopy, thermal analysis and X-ray powder diffraction patterns. Under the precipitation conditions employed, the thermodynamically stable monohydrate, CaC2O4?H2O (COM) was the predominant crystalline form. In the presence of micellar solutions of C16EO8 precipitation of this phase was facilitated as evidenced by higher initial precipitation rates and higher precipitate volume and number of particles, as compared to the controls. Micellar solutions of 50S retarded precipitation but induced crystallization of calcium oxalate dihydrate, CaC2O4?(2+×)H2O (COD, x≤0.5). Thus at c(SDS>CMC the precipitates contained ≥85 mass % COD. The results are discussed in relation to previously reported data on the precipitation of calcium oxalate in the presence of dodecyl ammonium chloride  相似文献   
25.
纳米TiO2光催化剂防团聚的光谱研究   总被引:3,自引:0,他引:3  
本文用溶胶 凝胶过程超临界CO2 萃取制备纳米二氧化钛气凝胶 ,用FT Raman ,FTIR ,FS分别对初生态气凝胶粒子、在常态下以气凝胶形式保存了 36 0天的TiO2 纳米粒子及以初生态气凝胶的粉体保存了36 0天的TiO2 粒子进行表征 ,以光催化降解甲基橙为模型反应 ,结果表明 ,在常态下以气凝胶形式保存纳米TiO2 粒子能有效地防止由纳米TiO2 表面超亲水性引起粒子间的团聚 ,保持了初生态粒子的光催化活性。  相似文献   
26.
27.
28.
It is difficult to control the bubble in a liquid by the external operation, because the behavior of the bubble is controlled in buoyancy and flow of liquid. On the other hand, microbubbles, whose diameter is several decades μm, stably disperse in static liquid because of their small buoyancy and electrical repulsion. When an ultrasound, whose frequency was 2.4 MHz, was irradiated, the milky white microbubbles suspended solution became rapidly clear. In this study, the effects of surfactant addition on the removal of microbubbles from a liquid in an ultrasonic field were investigated. The efficiency of removal of microbubbles decreased with surfactant addition. Surfactant type influenced the size of agglomerated microbubbles, and the efficiency of removal of microbubbles changed. The surface of microbubble was modified by surfactant adsorption, and the steric inhibition influenced the removal of microbubbles.  相似文献   
29.
Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recent years has research interest in this topic begun to increase. Nevertheless, despite the remarkable scientific progress made recently, many long-established processes are still used in industry. Scientific advancements can potentially lead to the improvement of existing industrial processes, but also to the development of completely new routes. This paper aims to review state-of-the-art synthesis and processing technologies, as well as the recent developments in academic research. Flame reactors that produce inorganic nanoparticles on industrial- and lab-scales are described, alongside a detailed overview of the different systems used for the production of carbon nanotubes and graphene. We discuss the problems of agglomeration and mixing of nanoparticles, which are strongly related to synthesis and processing. Finally, we focus on two promising processing techniques, namely nanoparticle fluidization and atomic layer deposition.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号